Matrix Systems (matrix + system)

Distribution by Scientific Domains


Selected Abstracts


Photoinitiated polymerization of methacrylic monomers in a polystyrene matrix: Kinetic, mechanistic, and structural aspects

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 12 2001
J. L. Mateo
Abstract The kinetics and mechanism of the photoinitiated polymerization of tetrafunctional and difunctional methacrylic monomers [1,6-hexanediol dimethacrylate (HDDMA) and 2-ethylhexyl methacrylate (EHMA)] in a polystyrene (PS) matrix were studied. The aggregation state, vitreous or rubbery, of the monomer/matrix system and the intermolecular strength of attraction in the monomer/matrix and growing macroradical/matrix systems are the principal factors influencing the kinetics and mechanism. For the PS/HDDMA system, where a relatively high intermolecular force of attraction between monomer and matrix and between growing macroradical and matrix occurs, a reaction-diffusion mechanism takes place at low monomer concentrations (<30,40%) from the beginning of the polymerization. For the PS/EHMA system, which presents low intermolecular attraction between monomer and matrix and between growing macroradical and matrix, the reaction-diffusion termination is not clear, and a combination of reaction-diffusion and diffusion-controlled mechanisms explains better the polymerization for monomer concentrations below 30,40%. For both systems, for which a change from a vitreous state to a rubbery state occurs when the monomer concentration changes from 10 to 20%, the intrinsic reactivity and kp/kt1/2 ratio (where kp is the propagation kinetic constant and kt is the termination kinetic constant) increase as a result of a greater mobility of the monomer in the matrix (a greater kp value). The PS matrix participates in the polymerization process through the formation of benzylic radical, which is bonded to some extent by radical,radical coupling with the growing methacrylic radica, producing grafting on the PS matrix. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2049,2057, 2001 [source]


Comparison of two wave element methods for the Helmholtz problem

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 1 2009
T. Huttunen
Abstract In comparison with low-order finite element methods (FEMs), the use of oscillatory basis functions has been shown to reduce the computational complexity associated with the numerical approximation of Helmholtz problems at high wave numbers. We compare two different wave element methods for the 2D Helmholtz problems. The methods chosen for this study are the partition of unity FEM (PUFEM) and the ultra-weak variational formulation (UWVF). In both methods, the local approximation of wave field is computed using a set of plane waves for constructing the basis functions. However, the methods are based on different variational formulations; the PUFEM basis also includes a polynomial component, whereas the UWVF basis consists purely of plane waves. As model problems we investigate propagating and evanescent wave modes in a duct with rigid walls and singular eigenmodes in an L-shaped domain. Results show a good performance of both methods for the modes in the duct, but only a satisfactory accuracy was obtained in the case of the singular field. On the other hand, both the methods can suffer from the ill-conditioning of the resulting matrix system. Copyright © 2008 John Wiley & Sons, Ltd. [source]


An element-wise, locally conservative Galerkin (LCG) method for solving diffusion and convection,diffusion problems

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2008
C. G. Thomas
Abstract An element-wise locally conservative Galerkin (LCG) method is employed to solve the conservation equations of diffusion and convection,diffusion. This approach allows the system of simultaneous equations to be solved over each element. Thus, the traditional assembly of elemental contributions into a global matrix system is avoided. This simplifies the calculation procedure over the standard global (continuous) Galerkin method, in addition to explicitly establishing element-wise flux conservation. In the LCG method, elements are treated as sub-domains with weakly imposed Neumann boundary conditions. The LCG method obtains a continuous and unique nodal solution from the surrounding element contributions via averaging. It is also shown in this paper that the proposed LCG method is identical to the standard global Galerkin (GG) method, at both steady and unsteady states, for an inside node. Thus, the method, has all the advantages of the standard GG method while explicitly conserving fluxes over each element. Several problems of diffusion and convection,diffusion are solved on both structured and unstructured grids to demonstrate the accuracy and robustness of the LCG method. Both linear and quadratic elements are used in the calculations. For convection-dominated problems, Petrov,Galerkin weighting and high-order characteristic-based temporal schemes have been implemented into the LCG formulation. Copyright © 2007 John Wiley & Sons, Ltd. [source]


An implicit three-dimensional fully non-hydrostatic model for free-surface flows

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2004
Hengliang Yuan
Abstract An implicit method is developed for solving the complete three-dimensional (3D) Navier,Stokes equations. The algorithm is based upon a staggered finite difference Crank-Nicholson scheme on a Cartesian grid. A new top-layer pressure treatment and a partial cell bottom treatment are introduced so that the 3D model is fully non-hydrostatic and is free of any hydrostatic assumption. A domain decomposition method is used to segregate the resulting 3D matrix system into a series of two-dimensional vertical plane problems, for each of which a block tri-diagonal system can be directly solved for the unknown horizontal velocity. Numerical tests including linear standing waves, nonlinear sloshing motions, and progressive wave interactions with uneven bottoms are performed. It is found that the model is capable to simulate accurately a range of free-surface flow problems using a very small number of vertical layers (e.g. two,four layers). The developed model is second-order accuracy in time and space and is unconditionally stable; and it can be effectively used to model 3D surface wave motions. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Design and In vitro evaluation of a film-controlled dosage form self-converted from monolithic tablet in gastrointestinal environment

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2010
Tingting Zhang
Abstract The purpose of this study is to design an easily manufactured sustained drug delivery system, which can be converted to a film coated system during the dissolution process and then control the drug release according to near zero-order kinetics. Two kinds of pH-sensitive and oppositely charged hydrophilic polymers, chitosan and alginate, were physically mixed as the matrix. Slightly water-soluble drugs such as theophylline, aspirin, and acetaminophen were utilized as model drugs. In vitro drug release and swelling tests were undertaken in simulated gastrointestinal environments. The formation and properties of the film formed during the dissolution process were identified using different techniques. It was demonstrated that formation of the film was based on the interaction of the polymers on tablet surface with the change of system pH. In 0,4,h drug release depended on the intrinsic properties of the polymers, however, characteristics of the film played a leading role in controlling drug release after 4,h. By studying the ratio of relaxation over Fickian diffusion and relationship between tablets swelling and drug release, it was revealed that the film probably modified drug release behavior by limiting polymer erosion. The in vivo behavior of this hydrophilic matrix system will be investigated. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4678,4690, 2010 [source]


Combined application of extrusion-spheronization and hot-melt coating technologies for improving moisture-proofing of herbal extracts

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 5 2010
Hao Chen
Abstract The aim of this research was to investigate the moisture-proofing effect and its mechanism for herbal extracts using extrusion-spheronization combined with hot-melt coating. Guizhi Fuling (GF) compound herbal extract with high hygroscopicity was used as a model drug. In the process of extrusion-spheronization, pellets containing 100% GF were prepared, and then coated with hot-melt coating material using a traditional coating pan. The moisture sorption data for GF were determined by storage at a series of different relative humidities. When the pellets were coated with a 96:4 mixture of stearic acid and polyethylene glycol 6000, the cumulative drug release was over 90% at 45,min while the moisture content was 4.9% at 75% RH within 10 days. These pellets have better moisture-proofing than those coated with Opadry AMB at the same coating level due to a different moisture sorption mechanism. The moisture sorption behavior of the hot-melt coating can be attributed to water vapor diffusion via a porous matrix system, while the Opadry AMB coating system involved a swelling controlled system. The Higuchi model was the best fit for the moisture sorption of the hot-melt coating in all formulations whereas the Opadry AMB coating fitted the Nuttanan model. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 2444,2454, 2010 [source]


Polymeric systems for amorphous ,9 -tetrahydrocannabinol produced by a hot-melt method.

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2006
Part II: Effect of oxidation mechanisms, chemical interactions on stability
Abstract The objectives of the present research investigations were to (i) elucidate the mechanism for the oxidative degradation of ,9 -tetrahydrocannabinol (THC) in polymer matrix systems prepared by a hot-melt fabrication procedure, and (ii) study the potential for controlling these mechanisms to reduce the degradation of THC in solid dosage formulations. Various factors considered and applied included drug-excipient compatibility, use of antioxidants, cross-linking in polymeric matrices, microenvironment pH, and moisture effect. Instability of THC in polyethylene oxide (PEO)-vitamin E succinate (VES) patches was determined to be due to chemical interaction between the drug and the vitamin as well as with the atmospheric oxygen. Of the different classes and mechanisms of antioxidants studied, quenching of oxygen by reducing agents, namely, ascorbic acid was the most effective in stabilizing THC in PEO-VES matrices. Only 5.8% of the drug degraded in the ascorbic acid-containing patch as compared to the control (31.6%) after 2 months of storage at 40°C. This coupled with the cross-linking extent and adjustment of the pH microenvironment, which seemed to have an impact on the THC degradation, might be effectively utilized towards stabilization of the drug in these polymeric matrices and other pharmaceutical dosage forms. These studies are relevant to the development of a stable transmucosal matrix system for the therapeutic delivery of amorphous THC. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:2473,2485, 2006 [source]


Development of a robust once-a-day glipizide matrix system

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2007
Shahla Jamzad
The robustness of a new hydroxypropylmethylcellulose (HPMC) based modified release glipizide (10 mg) formulation was studied. The tablet formulations were prepared by dry blending the ingredients and direct compression, incorporating a range of release modifying agents up to ± 20% w/w relative to an optimized formulation. The dissolution was assessed in 900 mL pH 6.8 buffer at 75 rev min,1 paddle speed. Calculated difference and similarity factors (f1 and f2) and results of analysis of variance suggest that the overall release profiles were similar. Compositional changes up to ± 20% w/w and a reduction of drug dose to half did not change the general release pattern of this low dose/pH-dependent drug in a significant way. It is concluded that the drug release from the developed matrix systems is highly dependent on the kinetics of hydration and erosion, and that the proposed compositional changes within ± 20% w/w did not alter this relationship. The particulate systems used were characterized by determining the Carr index, Hausner ratio and the rheological properties using a texture analyser. Results indicate that the release is reproducible and the system has potential for successful scale-up operation, while complying with recommended Food and Drug Administration guidelines "Scale Up and Post Approval Changes". [source]


Controlled Delivery Achieved with Bi-Layer Matrix Devices Produced by Co-Injection Moulding

MACROMOLECULAR BIOSCIENCE, Issue 8 2004
Cláudia M. Vaz
Abstract Summary: The aim of this study was to design new soy protein-based bi-layered co-injection moulded matrix systems aimed to achieve controlled drug delivery. The devices consisted of a drug-free outer layer (skin) and a drug-containing core. The systems overcame the inherent disadvantage of non-linear release associated with diffusion-controlled single-layer matrix devices by providing additional releasing area with time to compensate for the decreasing release rate. As expected, the bi-layer devices presented a significant decrease in drug release rate when compared with a correspondent single layer matrix system. The skin thickness and the degree of crosslinking of the core appeared to be very important tools to tailor the release patterns. Furthermore, due to the amphoteric nature of the soy protein, the developed devices evidenced a pH-dependent behaviour. The mechanisms of drug release were also elucidated at two different pH values: i) pH 5.0, near the isoelectric point of soy (low matrix solubility); and ii) pH 7.4, physiological pH (high matrix solubility). Consequently, changing the release medium from pH 5.0 to pH 7.4 after two hours, led to an abrupt increase in drug release and the devices presented a typical controlled drug delivery profile: slow release/fast release. These evidences may provide for the development of individual systems with different release onsets that in combination may exhibit drug releases at predetermined times in a pre-programmed way. Another possibility is the production of three-layer devices presenting bimodal release profiles (fast release/slow release/fast release) by similar technologies. Scanning electron micrograph of a developed bi-layer device. [source]


Numerical analysis of electrically small structures embedded in a layered medium

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 5 2009
Yongpin P. Chen
Abstract Accurate numerical analysis of electrically small structures embedded in a layered medium is presented in this letter. In our approach, the matrix-friendly layered medium Green's function is implemented for its elegant expression and singularity of lowest order. The current is decomposed into divergence-free part and nondivergence-free part according to quasi-Helmholtz decomposition when frequency tends to zero, to capture both capacitance and inductance physics. Frequency normalization is applied after analyzing frequency scaling properties of different blocks of the matrix system. Similar to the free space case, connection matrix is utilized to make the electro-quasi-static block amenable to iterative solvers. © 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 1304,1308, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24302 [source]


Three-dimensional numerical simulation of injection molding filling of optical lens and multiscale geometry using finite element method

POLYMER ENGINEERING & SCIENCE, Issue 9 2006
Sang-Woo Kim
This article presents the development, verification, and validation of three-dimensional (3-D) numerical simulation for injection molding filling of 3-D parts and parts with microsurface features. For purpose of verification and comparison, two numerical models, the mixed model and the equal-order model, were used to solve the Stokes equations with three different tetrahedral elements (Taylor-Hood, MINI, and equal-order). The control volume scheme with tetrahedral finite element mesh was used for tracking advancing melt fronts and the operator splitting method was selected to solve the energy equation. A new, simple memory management procedure was introduced to deal with the large sparse matrix system without using a huge amount of storage space. The numerical simulation was validated for mold filling of a 3-D optical lens. The numerical simulation agreed very well with the experimental results and was useful in suggesting a better processing condition. As a new application area, a two-step macro,micro filling approach was adopted for the filling analysis of a part with a micro-surface feature to handle both macro and micro dimensions while avoiding an excessive number of elements. POLYM. ENG. SCI., 46:1263,1274, 2006. © 2006 Society of Plastics Engineers [source]


Parallel computation of a highly nonlinear Boussinesq equation model through domain decomposition

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1 2005
Khairil Irfan Sitanggang
Abstract Implementations of the Boussinesq wave model to calculate free surface wave evolution in large basins are, in general, computationally very expensive, requiring huge amounts of CPU time and memory. For large scale problems, it is either not affordable or practical to run on a single PC. To facilitate such extensive computations, a parallel Boussinesq wave model is developed using the domain decomposition technique in conjunction with the message passing interface (MPI). The published and well-tested numerical scheme used by the serial model, a high-order finite difference method, is identical to that employed in the parallel model. Parallelization of the tridiagonal matrix systems included in the serial scheme is the most challenging aspect of the work, and is accomplished using a parallel matrix solver combined with an efficient data transfer scheme. Numerical tests on a distributed-memory super-computer show that the performance of the current parallel model in simulating wave evolution is very satisfactory. A linear speedup is gained as the number of processors increases. These tests showed that the CPU time efficiency of the model is about 75,90%. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Fracture Toughness Enhancement for Alumina Systems: A Review

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 3 2008
Osayande L. Ighodaro
Investigations have been carried out to determine ways of tailoring ceramic materials in order that one or more toughening mechanisms are activated in service. Microstructural manipulations, as well as composite formulations involving metallic, intermetallics, and ceramic phases have been used with ceramic matrices. Macrostructurally, laminated structures and functional gradient materials (FGMs) have also been formulated to enhance mechanical properties. Although significant improvements in material properties have been reported, ceramics are still below their projected positions on the materials map. This article presents a review of research activities pursuant to improving fracture toughness of alumina matrix systems and the enhancements achieved. [source]


Survey of quantitative feedback theory (QFT),

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 10 2001
Isaac Horowitz
QFT is an engineering design theory devoted to the practical design of feedback control systems. The foundation of QFT is that feedback is needed in control only when plant (P), parameter and/or disturbance (D) uncertainties (sets ,,={P}, ,,={D}) exceed the acceptable (A) system performance uncertainty (set ,,={A}). The principal properties of QFT are as follows. (1) The amount of feedback needed is tuned to the (,,, ,,, ,,) sets. If ,, ,exceeds' (,,, ,,), feedback is not needed at all. (2) The simplest modelling is used: (a) command, disturbance and sensor noise inputs, and (b) the available sensing points and the defined outputs. No special controllability test is needed in either linear or non-linear plants. It is inherent in the design procedure. There is no observability problem because uncertainty is included. The number of independent sensors determines the number of independent loop transmissions (Li), the functions which provide the benefits of feedback. (3) The simplest mathematical tools have been found most use ful,primarily frequency response. The uncertainties are expressed as sets in the complex plane. The need for the larger ,,, ,, sets to be squeezed into the smaller ,, set results in bounds on the Li(j,) in the complex plane. In the more complex systems a key problem is the division of the ,feedback burden' among the available Li(j,). Point-by-point frequency synthesis tremendously simplifies this problem. This is also true for highly uncertain non-linear and time-varying plants which are converted into rigorously equivalent linear time invariant plant sets and/or disturbance sets with respect to the acceptable output set ,,. Fixed point theory justifies the equivalence. (4) Design trade-offs are highly transparent in the frequency domain: between design complexity and cost of feedback (primarily bandwidth), sensor noise levels, plant saturation levels, number of sensors needed, relative sizes of ,,, ,, and cost of feedback. The designer sees the trade-offs between these factors as he proceeds and can decide according to their relative importance in his particular situation. QFT design techniques with these properties have been developed step by step for: (i) highly uncertain linear time invariant (LTI) SISO single- and multiple-loop systems, MIMO single-loop matrix and multiple-loop matrix systems; and (ii) non-linear and time-varying SISO and MIMO plants, and to a more limited extent for plants with distributed control inputs and sensors. QFT has also been developed for single- and multiple-loop dithered non-linear (adaptive) systems with LTI plants, and for a special class (FORE) of non-linear compensation. New techniques have been found for handling non-minimum-phase (NMP) MIMO plants, plants with both zeros and poles in the right half-plane and LTI plants with incidental hard non-linearities such as saturation. [source]


Thermoplastic matrix towpreg production

ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2010
J. F. Silva
Abstract This work was carried out to establish the processing window for the cost-efficient production of thermoplastic matrix towpregs with a recently developed powder-coating equipment. Three different fiber-reinforced thermoplastic matrix systems were studied: one for highly demanding markets (carbon fiber/PrimospireÔ) and other two for commercial applications (glass/polypropylene and glass/polyvinyl chloride). The mechanical properties determined on compression-molded composite components obtained from the produced towpregs were also evaluated. © 2010 Wiley Periodicals, Inc. Adv Polym Techn 29:80,85, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20174 [source]


Thermogravimetric investigation of the hydration behaviour of hydrophilic matrices

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2010
Lorena Segale
Abstract This article proposes thermogravimetric analysis (TGA) as a useful method to investigate the hydration behaviour of hydrophilic matrix tablets containing hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC) or a mixture of these two polymers and four drugs with different solubility. The hydration behaviour of matrix systems was studied as a function of the formulation composition and of the dissolution medium pH. TGA results suggest that the hydration of matrices containing HPMC is pH-independent and not affected by the characteristics of the loaded drug; this confirms HPMC as a good polymer to formulate controlled drug delivery systems. On the other hand, the performances of NaCMC matrix tablets are significantly affected by the medium pH and the hydration and swelling of this ionic polymer is influenced by the loaded drug. For systems containing the two polymers, HPMC plays a dominant role in the hydration/dissolution process at acidic pH, while at near neutral pH both the cellulose derivatives exert a significant influence on the hydration performance of systems. The results of this work show that TGA is able to give quantitative highlights on the hydration behaviour of polymeric materials; thus this technique could be a helpful tool to support conventional hydration/swelling/dissolution studies. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 2070,2079, 2010 [source]


Acyclovir delivery matrices based on poly(ethylene glycol)/chitosan semi-interpenetrating networks

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 6 2007
O. Diez-Sales
Abstract Chitosan matrix systems have been studied as potential vehicles for the prolonged release of acyclovir (ACV). The influence of chitosan concentration (from 0.83% to 1.67%) on viscoelastic properties of formulations with and without glyoxal was analyzed. For chitosan-poly(ethylene glycol) 400 formulations loss modulus (G,) are greater than storage modulus (G,). This corresponds to the characteristic behavior of nonstructured systems. When glyoxal was added to the chitosan-poly(ethylene glycol) 400 formulations, gelled matrix was obtained (i.e., G, is higher than G,), except for the lowest chitosan concentration. ACV release rates for the both types of systems, with and without glyoxal, were also determined. The ACV diffusion coefficient values from matrices are less than for the respective formulation without glyoxal and it was found to depend on the crosslink density within the matrices. Viscoelastic parameters, dynamic moduli (G,, G,), and complex viscosity (,*), were correlated with the ACV diffusion coefficients (D). The complex viscosity (,*) could be used as a parameter of predictive value for the release rate of drugs. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96:1653,1657, 2007 [source]


Polymeric systems for amorphous ,9 -tetrahydrocannabinol produced by a hot-melt method.

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2006
Part II: Effect of oxidation mechanisms, chemical interactions on stability
Abstract The objectives of the present research investigations were to (i) elucidate the mechanism for the oxidative degradation of ,9 -tetrahydrocannabinol (THC) in polymer matrix systems prepared by a hot-melt fabrication procedure, and (ii) study the potential for controlling these mechanisms to reduce the degradation of THC in solid dosage formulations. Various factors considered and applied included drug-excipient compatibility, use of antioxidants, cross-linking in polymeric matrices, microenvironment pH, and moisture effect. Instability of THC in polyethylene oxide (PEO)-vitamin E succinate (VES) patches was determined to be due to chemical interaction between the drug and the vitamin as well as with the atmospheric oxygen. Of the different classes and mechanisms of antioxidants studied, quenching of oxygen by reducing agents, namely, ascorbic acid was the most effective in stabilizing THC in PEO-VES matrices. Only 5.8% of the drug degraded in the ascorbic acid-containing patch as compared to the control (31.6%) after 2 months of storage at 40°C. This coupled with the cross-linking extent and adjustment of the pH microenvironment, which seemed to have an impact on the THC degradation, might be effectively utilized towards stabilization of the drug in these polymeric matrices and other pharmaceutical dosage forms. These studies are relevant to the development of a stable transmucosal matrix system for the therapeutic delivery of amorphous THC. © 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:2473,2485, 2006 [source]


Development of a robust once-a-day glipizide matrix system

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2007
Shahla Jamzad
The robustness of a new hydroxypropylmethylcellulose (HPMC) based modified release glipizide (10 mg) formulation was studied. The tablet formulations were prepared by dry blending the ingredients and direct compression, incorporating a range of release modifying agents up to ± 20% w/w relative to an optimized formulation. The dissolution was assessed in 900 mL pH 6.8 buffer at 75 rev min,1 paddle speed. Calculated difference and similarity factors (f1 and f2) and results of analysis of variance suggest that the overall release profiles were similar. Compositional changes up to ± 20% w/w and a reduction of drug dose to half did not change the general release pattern of this low dose/pH-dependent drug in a significant way. It is concluded that the drug release from the developed matrix systems is highly dependent on the kinetics of hydration and erosion, and that the proposed compositional changes within ± 20% w/w did not alter this relationship. The particulate systems used were characterized by determining the Carr index, Hausner ratio and the rheological properties using a texture analyser. Results indicate that the release is reproducible and the system has potential for successful scale-up operation, while complying with recommended Food and Drug Administration guidelines "Scale Up and Post Approval Changes". [source]


Controlled Delivery Achieved with Bi-Layer Matrix Devices Produced by Co-Injection Moulding

MACROMOLECULAR BIOSCIENCE, Issue 8 2004
Cláudia M. Vaz
Abstract Summary: The aim of this study was to design new soy protein-based bi-layered co-injection moulded matrix systems aimed to achieve controlled drug delivery. The devices consisted of a drug-free outer layer (skin) and a drug-containing core. The systems overcame the inherent disadvantage of non-linear release associated with diffusion-controlled single-layer matrix devices by providing additional releasing area with time to compensate for the decreasing release rate. As expected, the bi-layer devices presented a significant decrease in drug release rate when compared with a correspondent single layer matrix system. The skin thickness and the degree of crosslinking of the core appeared to be very important tools to tailor the release patterns. Furthermore, due to the amphoteric nature of the soy protein, the developed devices evidenced a pH-dependent behaviour. The mechanisms of drug release were also elucidated at two different pH values: i) pH 5.0, near the isoelectric point of soy (low matrix solubility); and ii) pH 7.4, physiological pH (high matrix solubility). Consequently, changing the release medium from pH 5.0 to pH 7.4 after two hours, led to an abrupt increase in drug release and the devices presented a typical controlled drug delivery profile: slow release/fast release. These evidences may provide for the development of individual systems with different release onsets that in combination may exhibit drug releases at predetermined times in a pre-programmed way. Another possibility is the production of three-layer devices presenting bimodal release profiles (fast release/slow release/fast release) by similar technologies. Scanning electron micrograph of a developed bi-layer device. [source]


Synthesis and characterization of chiral liquid-crystalline polysiloxanes containing fluorinated units and sulfonic acid groups

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 9 2008
Fan-Bao Meng
Abstract Chiral side-chain liquid-crystalline polysiloxanes (PS-1, PS-2, PS-3, PS-4, PS-5, PS-6) bearing fluorinated units and sulfonic acid groups were synthesized with poly(methylhydrogeno)siloxane, cholest-5-en-3-ol(3,)-4-(2-propenyloxy)benzoate, and 3-trifluoromethyl-phenyl 3-sulfo-4-undec-10- enoyloxy-benzoate. The effects of fluorinated units and sulfonic acid groups on characteristic of liquid-crystalline properties were studied. PS-1, PS-2, and PS-3 exhibited both smectic and cholesteric mesophases, while PS-4, PS-5, and PS-6 exhibited only cholesteric mesophase. As the polymers contained more fluorinated units and sulfonic acid groups, segregation of the fluorinated segment to the surface and aggregation of hydrogen bonding should occur. Therefore, the highly ordered lamellar mesogen,siloxane matrix systems should be disturbed severely, suggesting that PS-4, PS-5, and PS-6 show no smectic phase. The maximum reflection bands become broad and shifted slightly to long wavelength from PS-1 to PS-6. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Studies on thermal and morphological properties of 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane-epoxy-bismaleimide matrices

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 8 2003
K. Dinakaran
Abstract A new cyanate ester monomer, 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane has been synthesized and characterized. Epoxy modified with 4, 8 and 12% (by weight) of cyanate ester were made using epoxy resin and 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane and cured by using diaminodiphenylmethane. The cyanate ester modified epoxy matrix systems were further modified with 4, 8 and 12% (by weight) of bismaleimide (N,N,-bismaleimido-4,4,-diphenylmethane). The formation of oxazolidinone and isocyanurate during cure reaction of epoxy and cyanate ester blend was confirmed by IR spectral studies. Bismaleimide-cyanate ester-epoxy matrices were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and heat deflection temperature (HDT) analysis. Thermal studies indicate that the introduction of cyanate ester into epoxy resin improves the thermal degradation studies at the expense of glass transition temperature. Whereas the incorporation of bismaleimide into epoxy resin enhances the thermal properties according to its percentage content. However, the introduction of both cyanate ester and bismaleimide influences the thermal properties according to their percentage content. DSC thermogram of cyanate ester modified epoxy and bismaleimide modified epoxy show unimodel reaction exotherms. The thermal degradation temperature and heat distortion temperature of the cured bismaleimide modified epoxy and cyanate ester-epoxy systems increased with increasing bismaleimide content. The morphology of the bismaleimide modified epoxy and cyanate ester-epoxy systems were also studied by scanning electron microscopy. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Photoinitiated polymerization of methacrylic monomers in a polystyrene matrix: Kinetic, mechanistic, and structural aspects

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 12 2001
J. L. Mateo
Abstract The kinetics and mechanism of the photoinitiated polymerization of tetrafunctional and difunctional methacrylic monomers [1,6-hexanediol dimethacrylate (HDDMA) and 2-ethylhexyl methacrylate (EHMA)] in a polystyrene (PS) matrix were studied. The aggregation state, vitreous or rubbery, of the monomer/matrix system and the intermolecular strength of attraction in the monomer/matrix and growing macroradical/matrix systems are the principal factors influencing the kinetics and mechanism. For the PS/HDDMA system, where a relatively high intermolecular force of attraction between monomer and matrix and between growing macroradical and matrix occurs, a reaction-diffusion mechanism takes place at low monomer concentrations (<30,40%) from the beginning of the polymerization. For the PS/EHMA system, which presents low intermolecular attraction between monomer and matrix and between growing macroradical and matrix, the reaction-diffusion termination is not clear, and a combination of reaction-diffusion and diffusion-controlled mechanisms explains better the polymerization for monomer concentrations below 30,40%. For both systems, for which a change from a vitreous state to a rubbery state occurs when the monomer concentration changes from 10 to 20%, the intrinsic reactivity and kp/kt1/2 ratio (where kp is the propagation kinetic constant and kt is the termination kinetic constant) increase as a result of a greater mobility of the monomer in the matrix (a greater kp value). The PS matrix participates in the polymerization process through the formation of benzylic radical, which is bonded to some extent by radical,radical coupling with the growing methacrylic radica, producing grafting on the PS matrix. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2049,2057, 2001 [source]


Polymeric Toughening of Particle Filled Cyanate Ester Composites

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 10 2005
Tim J. Wooster
Abstract Summary: The present study examines the effect of polymeric tougheners on the performance of silica filled cyanate ester composites. The polymeric tougheners used have been shown to enhance cyanate ester tougheners in binary toughener/matrix systems. Tougheners that were able to form a favourable phase-separated morphology resulted in the greatest increase in crack resistance. The addition of these tougheners resulted in minimal loss of strength, and a slight decrease in modulus. Importantly the viscosity of the compounded systems was low enough for them to be readily processable. Whilst conserving most secondary properties, toughener addition did result in a slight increase in composite hydrolytic degradation. This issue was linked to the additive/ additive compounding processes. Removal of this extra moisture should eliminate this concern, permitting the used of these composites in electronic applications. Effect of ETBN content on the crack resistance of particle filled cyanate ester composites and SEM image of 15 matrix wt.-% ETBN. [source]