Matrix Degradation (matrix + degradation)

Distribution by Scientific Domains

Kinds of Matrix Degradation

  • cartilage matrix degradation
  • extracellular matrix degradation


  • Selected Abstracts


    REDUCED MATRIX DEGRADATION IN DIABETIC NEPHROPATHY: AMELIORATION WITH ACE INHIBITION

    NEPHROLOGY, Issue 3 2000
    McLennan Sv
    [source]


    Increased Bone Formation in Mice Lacking Plasminogen Activators,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2003
    E Daci
    Abstract Plasminogen activators tPA and uPA are involved in tissue remodeling, but their role in bone growth is undefined. Mice lacking tPA and uPA show increased bone formation and bone mass. The noncollagenous components of bone matrix are also increased, probably from defective degradation. This study underlines the importance of controlled bone matrix remodeling for normal endochondral ossification. Introduction: Proteolytic pathways are suggested to play a role in endochondral ossification. To elucidate the involvement of the plasminogen activators tPA and uPA in this process, we characterized the long bone phenotype in mice deficient in both tPA and uPA (tPA,/,:uPA,/,). Materials and Methods: Bones of 2- to 7-day-old tPA,/,:uPA,/, and wild-type (WT) mice were studied using bone histomorphometry, electron microscopy analysis, and biochemical assessment of bone matrix components. Cell-mediated degradation of metabolically labeled bone matrix, osteoblast proliferation, and osteoblast differentiation, both at the gene and protein level, were studied in vitro using cells derived from both genotypes. Results: Deficiency of the plasminogen activators led to elongation of the bones and to increased bone mass (25% more trabecular bone in the proximal tibial metaphysis), without altering the morphology of the growth plate. In addition, the composition of bone matrix was modified in plasminogen activator deficient mice, because an increased amount of proteoglycans (2×), osteocalcin (+45%), and fibronectin (+36%) was detected. Matrix degradation assays showed that plasminogen activators, by generating plasmin, participate in osteoblast-mediated degradation of the noncollagenous components of bone matrix. In addition, proliferation of primary osteoblasts derived from plasminogen activator-deficient mice was increased by 35%. Finally, osteoblast differentiation and formation of a mineralized bone matrix were enhanced in osteoblast cultures derived from tPA,/,:uPA,/, mice. Conclusions: The data presented indicate the importance of the plasminogen system in degradation of the noncollagenous components of bone matrix and suggest that the accumulation of these proteins in bone matrix,as occurs during plasminogen activator deficiency,may in turn stimulate osteoblast function, resulting in increased bone formation. [source]


    Angiopoietin 1 directly induces destruction of the rheumatoid joint by cooperative, but independent, signaling via ERK/MAPK and phosphatidylinositol 3-kinase/Akt

    ARTHRITIS & RHEUMATISM, Issue 7 2007
    Akira Hashiramoto
    Objective To determine whether angiopoietin 1 (Ang-1) potentiates overgrowth of the synovium and joint degradation in rheumatoid arthritis (RA), and to clarify the cell-signaling mechanisms of Ang-1 in the rheumatoid joint. Methods Expression of Ang-1, TIE-2 (a receptor for Ang-1), and matrix metalloproteinase 3 (MMP-3) was studied by immunohistochemistry. Activation of the ERK/MAPK and phosphatidylinositol (PI) 3-kinase/Akt pathways and of NF-,B was determined by Western blotting and an NF-,B p65 DNA binding activity assay, respectively. Induction of apoptosis was evaluated by nuclear staining, cell viability assay, and Western blotting of caspases. Synovial cell migration was evaluated by actin polymerization, Western blotting of Rho family proteins, and affinity purification with Rhotekin-Rho and p21-activated kinase 1. Matrix degradation was examined by induction of proMMP-3 secretion from synovial cells followed by in vitro cartilaginous matrix degradation assay. Results Ang-1 stimulated the ERK/MAPK and PI 3-kinase/Akt pathways in a cooperative but independent manner, which enhanced rheumatoid synovium overgrowth and joint destruction. In addition, Ang-1 activated NF-,B via Akt to promote cell growth, but also inhibited cell apoptosis via ERK and Akt. Ang-1 directly potentiated the extension of synovial cells in an ERK- and Akt-dependent manner by up-regulating Rho family proteins, which attenuated Rac signaling and led to membrane ruffling. Ang-1 induced proMMP-3 secretion from synovial cells, which resulted in direct degradation of the cartilaginous matrix. Conclusion Ang-1 stimulates the ERK/MAPK and PI 3-kinase/Akt pathways cooperatively, but in a manner independent of each other, to directly potentiate synovium overgrowth and joint destruction in RA. In addition to inflammatory cytokines, Ang-1/TIE-2 signaling appears to be an independent factor that contributes to the destruction of the rheumatoid joint. [source]


    Plectin deposition at podosome rings requires myosin contractility

    CYTOSKELETON, Issue 8 2008
    Annica Gad
    Abstract Metalloproteinase-dependent tissue invasion requires the formation of podosomes and invadopodia for localized matrix degradation. Actin cytoskeleton remodeling via Arp2/3-mediated actin polymerization is essential for podosome formation, and dynamic microtubules have an important role in maintaining podosome turnover in macrophages and osteoclasts. Little is known, however, about the involvement of the intermediate filament cytoskeleton in formation, stabilization, and turnover of podosomes. Here we show that vimentin intermediate filaments colocalize with the early sites of podosome formation at the stress fiber - focal adhesion interface in cultured vascular smooth muscle cells, but do not directly contribute to podosome formation, or stabilization. In unstimulated A7r5 cells the cytolinker protein plectin poorly colocalized with vimentin and the microdomains, but following induction by phorbol ester accumulated in the rings that surround the podosomes. In plectin-deficient A7r5 cells actin stress fiber remodelling is reduced in response to PDBu, and small podosomes remain localized at stable actin stress fibres. Pharmacological inhibition of actomyosin contractility by blebbistatin leads to an aberrant localization of podosomes away from the cell periphery and induces failure of plectin to surround the outer perimeter of these invasive adhesions. Taken together, we conclude that plectin is involved in growth and maturation of podosomes by reducing focal adhesion and stress fiber turnover, and that actomyosin-dependent contractility is required for the peripheral localization and specific deposition of plectin at the podosome rings. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source]


    8-isoprostane increases scavenger receptor A and matrix metalloproteinase activity in THP-1 macrophages, resulting in long-lived foam cells

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 7 2004
    H. Scholz
    Abstract Background, Oxidative stress is a key factor in atherogenesis, in which it is closely associated with the inflammation and formation of bioactive lipids. Although 8-isoprostane is regarded as a reliable marker of oxidative stress in vivo, the pathogenic role of this F2 -isoprostane in atherogenesis is far from clear. Based on the important role of foam cells in the initiation and progression of atherosclerosis we hereby examined the ability of 8-isoprostane to modulate oxidized (ox)LDL-induced foam cell formation and the function of these cells, particularly focusing on the effect on matrix degradation. Methods and results, 8-isoprostane (10 µM) augmented the oxLDL-induced (20 µg mL,1) lipid accumulation of THP-1 macrophages evaluated by Oil-Red-O staining and lipid mass quantification (colourimetric assay). Additionally, 8-isoprostane induced the expression of the scavenger receptor A type 1 (MSR-1) [mRNA and protein level], assessed by RT-PCR and Western blotting, respectively. Moreover, 8-isoprostane counteracted the oxLDL-induced apoptosis of these cells, involving both mitochondrial-protective and caspase-suppressive mechanisms. Along with these changes, 8-isoprostane increased the oxLDL-induced gene expression of matrix metalloproteinase (MMP)-9 and its endogenous inhibitor [i.e. tissue inhibitor of MMP (TIMP)-1] accompanied by enhanced total MMP activity. Conclusions, We show that 8-isoprostane increases foam cell formation at least partly by enhancing MSR-1 expression and by inhibiting apoptosis of these cells, inducing long-lived foam cells with enhanced matrix degrading capacity. Our findings further support a role for 8-isoprostane not only as a marker of oxidative stress in patients with atherosclerotic disorders, but also as a mediator in atherogenesis and plaque destabilization. [source]


    Effect of parathyroid hormone-related protein on fibroblast proliferation and collagen metabolism in human skin

    EXPERIMENTAL DERMATOLOGY, Issue 4 2002
    Emanuela Maioli
    Abstract: The parathyroid hormone-related protein (PTHrp), structurally similar to the parathyroid hormone (PTH) in its NH2 -terminal part, was first identified as a tumour-derived peptide responsible for a paraneoplastic syndrome known as humoral hypercalcemia of malignancy. The PTHrp gene is expressed not only in cancer but also in normal tissues during adult and/or fetal life, where it plays predominantly paracrine and/or autocrine roles. In the skin PTHrp produced by keratinocytes acts on fibroblasts by complex cooperative circuits involving cytokines and growth factors. In this report, we studied the direct effects of synthetic PTHrp 1,40 on proliferation and collagen synthesis and matrix metalloproteinase-2 (MMP-2) activity in cultures of fibroblasts isolated from normal human skin. Fibroblasts exposure to varying doses of PTHrp for 48 h, significantly and dose-dependently inhibited proliferation evaluated by [3H]-thymidine incorporation into DNA. A dose-dependent stimulation of cAMP released into the medium was concomitantly observed. In contrast, PTHrp had no effect on collagen synthesis evaluated either by [3H]-proline incorporation or by radioimmunoassay (RIA) of the carboxyterminal fragment of type I procollagen (PICP). MMP-2 activity, evaluated by quantitative zymographic analysis, was significantly increased by PTHrp treatment at doses of 160 and 320 nM. These findings indicate that PTHrp may play a role in normal dermal physiology by controlling both fibroblast proliferation and extracellular matrix degradation. [source]


    Involvement of Cdc42 and Rac small G proteins in invadopodia formation of RPMI7951 cells

    GENES TO CELLS, Issue 12 2003
    Hirokazu Nakahara
    Background:, Invadopodia are membrane protrusions into the extracellular matrix by aggressive tumour cells. These structures are associated with sites of matrix degradation and invasiveness of malignant tumour cells in an in vitro fibronectin degradation/invasion assay. The Rho family small G proteins, consisting of the Rho, Rac and Cdc42 subfamilies, are implicated in various cell functions, such as cell shape change, adhesion, and motility, through reorganization of the actin cytoskeleton. We studied the roles of the Rho family small G proteins in invadopodia formation. Results:, We first demonstrated that invadopodia of RPMI7951 human melanoma cells extended into the matrix substratum on a vertical view using a laser scanning confocal microscope system. We confirmed that invadopodia were rich in actin filaments (F-actin) and visualized clearly with F-actin staining on a vertical view as well as on a horizontal view. We then studied the roles of Rho, Rac, and Cdc42 in invasiveness of the same cell line. In the in vitro fibronectin degradation/invasion assay, a dominant active mutant of Cdc42 enhanced dot-like degradation, whereas a dominant active mutant of Rac enhanced diffuse-type degradation. Furthermore, frabin, a GDP/GTP exchange protein for Cdc42 with F-actin-binding activity, enhanced both dot-like and diffuse-type degradation. However, a dominant active mutant of Rho did not affect the fibronectin degradation. Moreover, inhibition of phosphatidylinositol-3 kinase (PI3K) disrupted the Rac and Cdc42-dependent actin structures and blocked the fibronectin degradation. Conclusion:, These results suggest that Cdc42 and Rac play important roles in fibronectin degradation and invasiveness in a coordinate manner through the frabin-Cdc42/Rac-PI3K signalling pathway. [source]


    Increased plasma MMP9 in integrin ,1-null mice enhances lung metastasis of colon carcinoma cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 1 2005
    Xiwu Chen
    Abstract Inhibitors of matrix metalloproteinases (MMPs) were developed as anticancer agents based on the observation that MMPs facilitate local tumor spread and metastasis by promoting matrix degradation and cell migration. Unfortunately, these inhibitors were unsuccessful in the clinical treatment of several cancers, including lung cancer. A possible reason contributing to their failure is that MMP activity is critical for the generation of inhibitors of tumor angiogenesis, including angiostatin. Thus, MMPs might play opposing roles in tumor vascularization and invasion. To determine which effect of elevated MMP levels dominates in the progression of metastatic cancer, experimental lung metastasis assays were performed in integrin ,1-null mice, a genetic model for increased plasma levels of MMP9 and MMP9-generated angiostatin (Pozzi et al., Proc. Natl. Acad. Sci. USA 2000;97:2202,7). We show that while the number of lung colonies in integrin ,1-null mice was significantly increased compared to their wild-type counterparts, tumor volume was markedly reduced. In vivo treatment with the MMP inhibitor doxycycline resulted in a significant decrease in the number of lung colonies in both genotypes, but the tumors that formed were bigger and more vascularized. Increased tumor vascularization paralleled decreased plasma levels of MMP9 and consequent decreased angiostatin synthesis. These results demonstrate that while inhibition of MMPs prevents and/or reduces tumor invasion and lung metastasis, it has the paradoxical effect of increasing the size and vascularization of metastatic tumors due to decreased generation of inhibitors of endothelial cell proliferation. The continued growth of these large well-vascularized tumors may explain the poor efficacy of MMP inhibitors in lung cancer clinical trials. © 2005 Wiley-Liss, Inc. [source]


    Prognostic relevance of TGF-,1 and PAI-1 in cervical cancer

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2004
    Suzanne Hazelbag
    Abstract Cervical carcinoma is a human papilloma virus (HPV)-related immunogenic type of malignancy, in which escape of the tumor from the hosts' immune response is thought to play an important role in carcinogenesis. The multifunctional cytokine transforming growth factor-,1 (TGF-,1) is involved in immunosuppression, stroma and extracellular matrix formation and controlling (epithelial) cell growth. The plasminogen activating (PA) system plays a key role in the cascade of tumor-associated proteolysis leading to extracellular matrix degradation and stromal invasion. Changes in expression of components of this system, including plasminogen activator inhibitor-1 (PAI-1), have been associated with poor prognosis in a variety of solid tumors. The present study was undertaken to assess the role of both components on relapse, survival and other clinicopathologic parameters in cervical cancer. The expression of TGF-,1 mRNA in 108 paraffin-embedded cervical carcinomas was detected by mRNA in situ hybridization. Immunohistochemistry was used to investigate the expression of PAI-1 protein. The presence of cytoplasmatic TGF-,1 mRNA in tumor cells was not significantly correlated with the other clinicopathologic parameters investigated or with a worse (disease-free) survival. Expression of the PAI-1 protein in tumor cells was strongly correlated with worse overall and disease-free survival, in addition to well-known prognostic parameters such as lymph node metastasis, depth of tumor infiltration, tumor size and vasoinvasion. In the multivariate analysis, PAI-1 turned out to be a strong independent prognostic factor. In a subgroup of patients without lymph node metastases, PAI-1 was predictive for worse survival and relapse of disease, too. Our results show that the (enhanced) expression of PAI-1 by carcinoma cells is correlated with worse (overall and disease-free) survival of patients with cancer of the uterine cervix. The expression of TGF-,1 in itself is not associated with worse survival in these patients. Although simultaneous presence of the 2 factors was observed in all tumors, induction of PAI-1 by TGF-,1 could not be demonstrated in our group of cervical carcinomas. © 2004 Wiley-Liss, Inc. [source]


    A subpopulation of peritoneal macrophages form capillary-like lumens and branching patterns in vitro

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2006
    Mirela Anghelina
    Abstract Objective: We have previously shown that monocytes/macrophages (MC/Mph) influence neovascularization by extracellular matrix degradation, and by direct incorporation into growing microvessels. To date, neither the phenotype of these cells, nor the stages of their capillary-like conversion were sufficiently characterized. Methods: We isolated mouse peritoneal Mph from transgenic mice expressing fluorescent proteins either ubiquitously, or specifically in the myelocytic lineage. These Mph were embedded in Matrigel which contained fluorescent protease substrates, exposed to an MCP-1 chemotactic gradient, and then examined by confocal microscopy after various intervals. Results: Within 3 hrs after gel embedding, we detected TIMP-1 and MMP-12 dependent proteolysis of the matrix surrounding Mph, mostly in the direction of high concentrations of MCP-1. After 2 days, Mph developed intracellular vacuoles containing degradation product. At 5 days these vacuoles were enlarged and/or fused to generate trans-cellular lumens in approximately 10% of cells or more (depending on animal's genetic background). At this stage, Mph became tubular, and occasionally organized in three-dimensional structures resembling branched microvessels. Conclusion: Isolated mouse peritoneal Mph penetrate Matrigel and form tunnels via a metalloprotease-driven proteolysis and phagocytosis. Following a morphological adjustment driven by occurrence, enlargement and/or fusion process of intracellular vacuoles, similar to that described in bona fide endothelium, a subpopulation of these cells end up by lining a capillary-like lumen in vitro. Thus we show that adult Mph, not only the more primitive ,endothelial progenitors', have functional properties until now considered defining of the endothelial phenotype. [source]


    Atypical protein kinase C activity is required for extracellular matrix degradation and invasion by Src-transformed cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2009
    Elena M. Rodriguez
    Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src-dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v-Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v-Src. aPKC activity was inhibited either by addition of a membrane-permeable pseudosubstrate, by expression of a dominant-negative aPKC, or by RNAi-mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src-transformed cells and for their ability to polarize at the edge of a monolayer. The , isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKC, is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v-Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src-transformed cells to degrade and invade the extracellular matrix. J. Cell. Physiol. 221: 171,182, 2009. © 2009 Wiley-Liss, Inc [source]


    Immortalized cell lines from mouse xiphisternum preserve chondrocyte phenotype

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006
    Manas K. Majumdar
    Chondrocytes are unique to cartilage and the study of these cells in vitro is important for advancing our understanding of the role of these cells in normal homeostasis and disease including osteoarthritis (OA). As there are limitations to the culture of primary chondrocytes, cell lines have been developed to overcome some of these obstacles. In this study, we developed a procedure to immortalize and characterize chondrocyte cell lines from mouse xiphisternum. The cells displayed a polygonal to fibroblastic morphology in monolayer culture. Gene expression studies using quantitative PCR showed that the cell lines responded to bone morphogenetic protein 2 (BMP-2) by increased expression of matrix molecules, aggrecan, and type II collagen together with transcriptional factor, Sox9. Stimulation by IL-1 results in the increased expression of catabolic effectors including MMP-13, nitric oxide synthase, ADAMTS4, and ADAMTS5. Cells cultured in alginate responded to BMP-2 by increased synthesis of proteoglycan (PG), a major matrix molecule of cartilage. IL-1 treatment of cells in alginate results in increased release of PG into the conditioned media. Further analysis of the media showed the presence of Aggrecanase-cleaved aggrecan fragments, a signature of matrix degradation. These results show that the xiphisternum chondrocyte cell lines preserve their chondrocyte phenotype cultured in either monolayer or 3-dimensional alginate bead culture systems. In summary, this study describes the establishment of chondrocyte cell lines from the mouse xiphisternum that may be useful as a surrogate model system to understand chondrocyte biology and to shed light on the underlying mechanism of pathogenesis in OA. J. Cell. Physiol. 209: 551,559, 2006. © 2006 Wiley-Liss, Inc. [source]


    Activity of the matrix metalloproteinase-9 promoter in human normal and tumor cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004
    Cristina Morelli
    Matrix metalloproteinases (MMPs) belong to a family of proteins essential for those processes involving extracellular matrix degradation, such as embryonic development, morphogenesis, and tissue resorption and remodeling. Some members of this family play a crucial role also in tumor invasion. Most notably, MMP-9 is expressed in invasive tumors, and represents a key protein in brain tumor progression, whereas it is not expressed in adult normal tissues. The expression of the MMP-9, like other members of the family, is transcriptionally regulated. We, therefore, postulated that the MMP-9 promoter could be useful in driving selective expression of exogenous genes in tumor cells. This represents a key feature for gene therapy applications, since currently employed viral promoters induce severe organ toxicity, limiting the clinical benefits. In this study, we investigated the activity of the MMP-9 promoter in driving exogenous gene expression in human cell lines. High levels of reporter gene expression were detected in tumor derived cell lines, whereas the MMP-9 promoter activity in non-tumor cells was negligible. Furthermore, we show that tumor necrosis factor alpha (TNF,) is able to enhance considerably the MMP-9 promoter activity only in tumor cells. Since recent studies have indicated that MMP-9 enzymatic activity is detectable in the blood, it would be possible to screen potential responsive patients for a tumor gene therapy approach based on the MMP-9 promoter. Taken together these data suggest that MMP-9 promoter has the characteristics for transcritpionally targeted and inducible gene therapy applications. J. Cell. Physiol. 199: 126,133, 2004© 2003 Wiley-Liss, Inc. [source]


    Downregulation of a rheumatoid arthritis-related antigen (RA-A47) by ra-a47 antisense oligonucleotides induces inflammatory factors in chondrocytes

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2003
    Takako Hattori
    Previously we have shown that the expression of RA-A47 (rheumatoid arthritis-related antigen) which is identical to HSP47, a collagen-binding chaperon, is downregulated in chondrocytes by tumor necrosis factor , (TNF,). RA-A47 was also found on the surface of chondrocytes where it is recognized as an antigen in the serum of rheumatoid arthritis (RA) patients. Its translocation to the cell surface from endoplasmic reticulum membrane where it is normally located was also enhanced by TNF,. To understand the significance of RA-A47 downregulation in chondrocytes independent from other effects of TNF,, we used an antisense oligonucleotide approach and investigated the effect of this treatment on the expression of molecules related to matrix degradation and production of growth factors for chondrocytic, endothelial, and synovial cells. Here we show that treatment of rabbit chondrocyes and human chondrosarcoma cells HCS-2/8 by ra-a47 antisense S -oligonucleotides significantly reduced the expression of ra-a47 both at mRNA and protein level. Interestingly, this TNF,-independent RA-A47 downregulation was associated with a strong induction of matrix metalloproteinase (MMP)-9 mRNA and inducible NO synthase (iNOS) mRNA. The induction of active-type MMP-9 was further detected by gelatin zymography. Under the same conditions, the release of basic fibroblast growth factor (bFGF) and connective tissue growth factor (CTGF) from HCS-2/8 cells into the conditioned medium (CM) was strongly enhanced. These effects were not a result of TNF, upregulation, since the ra-a47 antisense oligonucleotide treatment did not enhance TNF, synthesis. These observations indicate that downregulation of RA-A47 induces TNF,-independent cartilage-degrading pathways involving iNOS and MMP-9. Furthermore, the stimulation of bFGF and CTGF release from chondrocytes may stimulate the proliferation of adjacent endothelial and/or synovial cells. J. Cell. Physiol. 197: 94,102, 2003© 2003 Wiley-Liss, Inc. [source]


    Improved bioengineered cartilage tissue formation following cyclic compression is dependent on upregulation of MT1-MMP

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2010
    J. N. Amrith De Croos
    Abstract The generation of bioengineered cartilage tissue suitable for transplantation is a potential therapy to treat damaged cartilage. We have shown previously that the physical and biomechanical properties of bioengineered cartilage can be improved by the application of 30,min of cyclic compression by a mechanism involving sequential upregulation of gene and protein levels of membrane type-1 matrix metalloproteinase (MT1-MMP) and MMP-13. In the current study, we demonstrated that MT1-MMP is critical to this response, as blocking the upregulation of MT1-MMP prevented the improvement in tissue formation. MT1-MMP seems to act by inducing tissue remodeling as evidenced by the presence of aggrecan degradation products by Western blot analysis and increased release of matrix molecules into the media. Release of these molecules was diminished when MT1-MMP upregulation was prevented. This matrix degradation was likely due to MT1-MMP, as under conditions where MMP-13 expression is maintained (stimulation in the presence of MT1-MMP siRNA) the release of these matrix molecules into the media was still prevented. It also appears that MT1-MMP does not regulate MMP-13 gene expression, as MT1-MMP-siRNA pretreatment had no effect on MMP-13 expression following mechanical stimulation. Further analysis of the anabolic genes and proteins involved in mechanically stimulated cartilage will lead to better understanding of the mechanism(s) underlying tissue formation yielding improved bioengineered cartilage. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:921,927, 2010 [source]


    Analysis of matrix metalloproteinase (MMP-8 and MMP-2) activity in gingival crevicular fluid from children with Down's syndrome

    JOURNAL OF PERIODONTAL RESEARCH, Issue 2 2010
    T. Yamazaki-Kubota
    Yamazaki-Kubota T, Miyamoto M, Sano Y, Kusumoto M, Yonezu T, Sugita K, Okuda K, Yakushiji M, Ishihara K. Analysis of matrix metalloproteinase (MMP-8 and MMP-2) activity in gingival crevicular fluid from children with Down's syndrome. J Periodont Res 2010; doi: 10.1111/j.1600-0765.2009.01214.x. © 2009 John Wiley & Sons A/S Background and Objective:, High levels of colonization by periodontopathic bacteria and a high prevalence of chronic inflammatory periodontal disease have been reported in children with Down's syndrome. Matrix metalloproteinases (MMPs) are mediators of extracellular matrix degradation and remodelling, and are deeply involved in the course of periodontal disease. To clarify the relationship between Down's syndrome and periodontitis, we investigated levels of MMP-2 and MMP-8 in gingival crevicular fluid (GCF) and detection of periodontopathic bacteria from subgingival plaque. Material and Methods:, Samples of GCF and plaque were isolated from central incisors. Levels of MMPs were evaluated by enzyme-linked immunosorbent assay, and periodontopathic bacteria were detected by polymerase chain reaction. Results:, Levels of MMP-2 and MMP-8 in Down's syndrome patients were higher than those in healthy control subjects. In the Down's syndrome group, increases in these MMPs were observed in GCF from patients with an oral hygiene index score of < 2 and in GCF from sites that were negative for bleeding on probing. The detection rate of periodontopathic bacteria in Down's syndrome patients was higher than that in the control subjects. Matrix metalloproteinase-2 levels in sites harbouring Porphyromonas gingivalis or Aggregatibacter (Actinobacillus) actinomycetemcomitans were lower than in those without these microorganisms. Conclusion:, These results suggest an increase in MMP-2 and MMP-8 in Down's syndrome patients, regardless of whether inflammation of periodontal tissue is present or not. [source]


    Colonic delivery of ,-lactamases does not affect amoxicillin pharmacokinetics in rats

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 5 2008
    Sandrine Bourgeois
    Abstract Pectin beads containing ,-lactamases were designed for the hydrolysis of colonic residual antibiotics responsible for the emergence of resistance. Beads were prepared by ionotropic gelation in CaCl2 and stabilized by coating with polyethylenimine (PEI) to resist disintegration in the upper GI tract. Particle characterization showed that dried beads had a diameter around 1 mm independently of the presence of PEI. Seven to ten percent (w/w) of PEI was located on bead surface forming a coating layer as observed by scanning electron microscopy. PEI improved considerably bead stability in simulated intestinal medium while affecting slightly the encapsulation efficiency of active ,-lactamases. Coated beads were able to preserve ,-lactamases from premature leakage in the upper GIT whereas, in simulated colonic medium, pectinases induced matrix degradation and reduction of ,-lactamase content especially in beads coated in a 0.8% PEI solution. Finally, the pharmacokinetics of amoxicillin in rat after oral administration was not modified by the co-administration of beads containing ,-lactamases. In conclusion, PEI-coated beads are stable in the upper GIT but remain sensitive to the action of pectinolytic enzymes allowing release of ,-lactamases in a colonic medium without modification of the absorption of a ,-lactam antibiotic when co-administered with loaded beads. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97: 1853,1863, 2008 [source]


    Matrix metalloproteinase 11 (MMP-11; stromelysin-3) and synthetic inhibitors

    MEDICINAL RESEARCH REVIEWS, Issue 4 2007
    Magdalini Matziari
    Abstract Matrix metalloproteinase (MMP)-11, or Stromelysin 3, is a particular member of MMP family, a group of zinc-dependent endopeptidases involved in matrix degradation and tissue remodeling. Despite intense efforts since its first characterization 15 years ago, its role and target substrates in different diseases remain largely unknown. While mice with MMP-11 deficiency display no particular phenotype, analysis of different tumorigenesis models with these mice lead to the conclusion that MMP-11 promotes tumor development. In contrast with other MMPs, MMP-11 is unable to degrade any major extracellular matrix component and unlike most of other MMPs that are secreted as inactive proenzymes and activated extracellularly, MMP-11 is secreted under active form. MMP-11 may thus play a unique role in tissue remodeling processes, including those associated with tumor progression. Although MMP-11 and other MMPs have been considered as promising targets to combat cancer, a first series of clinical trials using broad-spectrum MMP inhibitors have not led to significant therapeutic benefits. These disappointing results highlight the need for better understanding of the exact role played by each MMP during the different stages of tumor progression. Among the different strategies to fill this gap, highly specific MMP inhibitors would be of great value. This review provides an update on the selectivity profile of phosphinic MMP-11 synthetic inhibitors developed and discusses the opportunities and limitations to identify inhibitors able to fully discriminate MMP-11 from the other MMPs. © 2006 Wiley Periodicals, Inc. Med Res Rev, 27, No. 4, 528,552, 2007 [source]


    Chemical and morphological features of dental composite resin: Influence of light curing units and immersion media

    MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2010
    Patrícia Aleixo Dos Santos
    Abstract Aims: The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were XL 3000 (480 mW/cm2), Jet Lite 4000 Plus (1230mW/cm2), and Ultralume Led 5 (790 mW/cm2) and immersion media were artificial saliva, Coke®, tea and coffee, totaling 12 experimental groups. Specimens (10 mm × 2 mm) were immersed in each respective solution for 5 min, three times a day, during 60 days and stored in artificial saliva at 37°C ± 1°C between immersion periods. Topography and chemical analysis was qualitative. Findings: Groups immersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calcium at the material surface. Regarding coffee, there was a reasonable chemical degradation with loss of load particles and deposition of ions. For tea, superficial degradation occurred in specific areas with deposition of calcium, carbon, potassium and phosphorus. For Coke®, excessive matrix degradation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion: Light curing units did not influence the superficial morphology of composite resin tested, but the immersion beverages did. Coke® affected material's surface more than did the other tested drinks. Microsc. Res. Tech., 2010. © 2009 Wiley-Liss, Inc. [source]


    Discoidin domain receptor 2 mediates the collagen II-dependent release of interleukin-6 in primary human chondrocytes,

    THE JOURNAL OF PATHOLOGY, Issue 2 2009
    Andreas R Klatt
    Abstract We deciphered constituent parts of a signal transduction cascade that is initiated by collagen II and results in the release of various pro-inflammatory cytokines, including interleukin-6 (IL-6), in primary human chondrocytes. This cascade represents a feed-forward mechanism whereby cartilage matrix degradation is exacerbated by the mutually inducing effect of released collagen II fragments and pro-inflammatory cytokines. We previously proposed discoidin domain receptor 2 as a central mediator in this event. Since this cascade plays a prominent role in the pathogenesis of osteoarthritis, our study further investigates the hypothesis that discoidin domain receptor 2 is a candidate receptor for collagen II, and that transcription factor NF,B, lipid kinase PI3K, and the MAP kinases are constituent parts of this very signal transduction cascade. To accomplish this, we selectively knocked down the molecules of interest in primary human chondrocytes, induced the specified cascade by incubating primary human chondrocytes with collagen II, and observed the outcome, specifically the changes in interleukin-6 release. Knockdown was performed by siRNA-mediated gene silencing in the case of discoidin domain receptor 2 (DDR2) or by using specific inhibitors for the remainder of the molecules. Results indicated that discoidin domain receptor 2 mediates the collagen II-dependent release of interleukin-6 in primary human chondrocytes and that MAP kinases p38, JNK and ERK, as well as transcription factor NF,B, are integral components of intracellular collagen II signalling. Given the detrimental role of these molecules in osteoarthritis, our findings provide new targets for more specific therapeutics, which may have fewer side effects than those currently applied. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


    Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis

    ARTHRITIS & RHEUMATISM, Issue 7 2010
    Jennifer M. Milner
    Objective Increasing evidence implicates serine proteinases in pathologic tissue turnover. The aim of this study was to assess the role of the transmembrane serine proteinase matriptase in cartilage destruction in osteoarthritis (OA). Methods Serine proteinase gene expression in femoral head cartilage obtained from either patients with hip OA or patients with fracture to the neck of the femur (NOF) was assessed using a low-density array. The effect of matriptase on collagen breakdown was determined in cartilage degradation models, while the effect on matrix metalloproteinase (MMP) expression was analyzed by real-time polymerase chain reaction. ProMMP processing was determined using sodium dodecyl sulfate,polyacrylamide gel electrophoresis/N-terminal sequencing, while its ability to activate proteinase-activated receptor 2 (PAR-2) was determined using a synovial perfusion assay in mice. Results Matriptase gene expression was significantly elevated in OA cartilage compared with NOF cartilage, and matriptase was immunolocalized to OA chondrocytes. We showed that matriptase activated proMMP-1 and processed proMMP-3 to its fully active form. Exogenous matriptase significantly enhanced cytokine-stimulated cartilage collagenolysis, while matriptase alone caused significant collagenolysis from OA cartilage, which was metalloproteinase-dependent. Matriptase also induced MMP-1, MMP-3, and MMP-13 gene expression. Synovial perfusion data confirmed that matriptase activates PAR-2, and we demonstrated that matriptase-dependent enhancement of collagenolysis from OA cartilage is blocked by PAR-2 inhibition. Conclusion Elevated matriptase expression in OA and the ability of matriptase to activate selective proMMPs as well as induce collagenase expression make this serine proteinase a key initiator and inducer of cartilage destruction in OA. We propose that the indirect effects of matriptase are mediated by PAR-2, and a more detailed understanding of these mechanisms may highlight important new therapeutic targets for OA treatment. [source]


    Involvement of protein kinase C, in interleukin-1, induction of ADAMTS-4 and type 2 nitric oxide synthase via NF-,B signaling in primary human osteoarthritic chondrocytes

    ARTHRITIS & RHEUMATISM, Issue 12 2007
    Priya S. Chockalingam
    Objective Protein kinase C, (PKC,), an atypical PKC, has been found to be transcriptionally up-regulated in human osteoarthritic (OA) articular cartilage. This study was undertaken to examine the role of PKC, in interleukin-1, (IL-1,),induced NF-,B signaling in human OA chondrocytes, and ultimately to better understand its function in the regulation of downstream mediators of cartilage matrix degradation. Methods Pharmacologic inhibitors or genetic knockdown techniques were used to investigate the role of PKC,. Western blot analysis was used to evaluate phosphorylation of PKC, and NF-,B. Quantitative polymerase chain reaction (PCR) and activity assays were used to evaluate ADAMTS-4 expression and aggrecanase activity, respectively. Quantitative PCR, biochemical identification, and Western blot analysis were used to evaluate type 2 nitric oxide synthase (NOS2) and NO production. Results Phosphorylation of PKC, and NF-,B was induced by IL-1, treatment in a time-dependent manner, and was specifically inhibited by inhibitors of atypical PKCs. Inhibition of PKC, suppressed IL-1,,induced up-regulation of ADAMTS-4 messenger RNA (mRNA) and aggrecanase activity. Inhibitors of atypical PKCs also inhibited IL-1,,induced NO production and NOS2 mRNA expression, demonstrating a novel link between PKC, and NO production. Furthermore, small interfering RNA, or short hairpin RNA,mediated knockdown of PKC, mRNA resulted in significant repression of both ADAMTS-4 and NOS2 mRNA expression. Conclusion Our results show that PKC, is involved in the regulation of IL-1,,induced NF-,B signaling in human OA chondrocytes, which in turn regulates downstream expression of ADAMTS-4 and NOS2. Therefore, inhibition of PKC, could potentially regulate the production of matrix-degrading enzymes as well as NO production and have a profound effect on disease progression in OA. [source]


    Neutrophil gelatinase,associated lipocalin is expressed in osteoarthritis and forms a complex with matrix metalloproteinase 9

    ARTHRITIS & RHEUMATISM, Issue 10 2007
    Kalpana Gupta
    Objective Expression of matrix metalloproteinase 9 (MMP-9) is up-regulated in osteoarthritis (OA) and usually presents as multiple bands when synovial fluid (SF) from OA patients is analyzed by zymography. Among these bands is an ,125,130,kd band for high molecular weight (HMW) gelatinase, which has not been characterized. This study was undertaken to characterize the HMW MMP activity in OA SF. Methods MMP activity in OA SF was determined by gelatin zymography. Recombinant MMPs were used to identify MMP activity on the zymogram. Western immunoblotting, immunoprecipitation, and immunodepletion analyses were performed using antibodies specific for human MMP-9 and human neutrophil gelatinase,associated lipocalin (NGAL). Human cartilage matrix degradation was determined by dimethylmethylene blue assay. Results Zymographic analysis showed that the HMW gelatinase in OA SF comigrated with a purified NGAL,MMP-9 complex. Results of Western immunoblotting showed that the HMW gelatinase was also recognized by antibodies specific for human NGAL or human MMP-9. These same antibodies also immunoprecipitated the HMW gelatinase activity from OA SF. The NGAL,MMP-9 complex was reconstituted in vitro in gelatinase buffer. In the presence of NGAL, MMP-9 activity was stabilized; in the absence of NGAL, rapid loss of MMP-9 activity occurred. MMP-9,mediated release of cartilage matrix proteoglycans was significantly higher in the presence of NGAL (P < 0.05). Conclusion Our findings demonstrate that the HMW gelatinase activity in OA SF represents a complex of NGAL and MMP-9. The ability of NGAL to protect MMP-9 activity is relevant to cartilage matrix degradation in OA and may represent an important mechanism by which NGAL may contribute to the loss of cartilage matrix proteins in OA. [source]


    Angiopoietin 1 directly induces destruction of the rheumatoid joint by cooperative, but independent, signaling via ERK/MAPK and phosphatidylinositol 3-kinase/Akt

    ARTHRITIS & RHEUMATISM, Issue 7 2007
    Akira Hashiramoto
    Objective To determine whether angiopoietin 1 (Ang-1) potentiates overgrowth of the synovium and joint degradation in rheumatoid arthritis (RA), and to clarify the cell-signaling mechanisms of Ang-1 in the rheumatoid joint. Methods Expression of Ang-1, TIE-2 (a receptor for Ang-1), and matrix metalloproteinase 3 (MMP-3) was studied by immunohistochemistry. Activation of the ERK/MAPK and phosphatidylinositol (PI) 3-kinase/Akt pathways and of NF-,B was determined by Western blotting and an NF-,B p65 DNA binding activity assay, respectively. Induction of apoptosis was evaluated by nuclear staining, cell viability assay, and Western blotting of caspases. Synovial cell migration was evaluated by actin polymerization, Western blotting of Rho family proteins, and affinity purification with Rhotekin-Rho and p21-activated kinase 1. Matrix degradation was examined by induction of proMMP-3 secretion from synovial cells followed by in vitro cartilaginous matrix degradation assay. Results Ang-1 stimulated the ERK/MAPK and PI 3-kinase/Akt pathways in a cooperative but independent manner, which enhanced rheumatoid synovium overgrowth and joint destruction. In addition, Ang-1 activated NF-,B via Akt to promote cell growth, but also inhibited cell apoptosis via ERK and Akt. Ang-1 directly potentiated the extension of synovial cells in an ERK- and Akt-dependent manner by up-regulating Rho family proteins, which attenuated Rac signaling and led to membrane ruffling. Ang-1 induced proMMP-3 secretion from synovial cells, which resulted in direct degradation of the cartilaginous matrix. Conclusion Ang-1 stimulates the ERK/MAPK and PI 3-kinase/Akt pathways cooperatively, but in a manner independent of each other, to directly potentiate synovium overgrowth and joint destruction in RA. In addition to inflammatory cytokines, Ang-1/TIE-2 signaling appears to be an independent factor that contributes to the destruction of the rheumatoid joint. [source]


    Soluble urokinase-type plasminogen activator receptor (suPAR) as an independent factor predicting worse prognosis and extra-bone marrow involvement in multiple myeloma patients

    BRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2003
    Gian Matteo Rigolin
    Summary. The urokinase-type plasminogen activator (uPA) system, which consists of a proteinase (uPA), a receptor (uPAR or CD87) and inhibitors, is involved in proteolysis, cell migration, tissue remodelling, angiogenesis and cell adhesion. Recent findings suggest that malignant plasma cells express uPA and uPAR. The expression of these factors could represent a process by which myeloma plasma cells interact with the bone marrow (BM) environment and influence important biological events such as bone matrix degradation, plasma cell invasion and homing and, possibly, clinical evolution. We evaluated uPAR (CD87) and its soluble form (suPAR) in 49 multiple myeloma (MM) patients and correlated their expression and levels with clinico-biological characteristics of the disease. Flow cytometric analysis demonstrated that CD87 was expressed in all MM patients. High CD87 expression was associated with higher intensity of expression of CD56 (P = 0·038), CD38 (P = 0·058) and CD138 (P = 0·054) and CD45bright positivity (P = 0·014). suPAR levels correlated positively with soluble serum CD138 (P = 0·001), creatinine (P = 0·001), beta2 -microglobulin (P < 0·001), disease stage (P = 0·017) and extra-BM involvement (P = 0·002). In the 46 evaluable patients, multivariate analysis showed that high levels of suPAR (P = 0·0214) and disease stage (P = 0·0064) were predictive of extra-BM involvement. In multivariate Cox analysis, 13q deletion (P = 0·0278), high soluble serum CD138 (P = 0·0201) and high suPAR (P = 0·0229) were the only parameters that independently affected survival. We conclude that CD87 is expressed on myeloma plasma cells and that suPAR, which predicts extra-BM involvement and poor prognosis, possibly represents a molecule with a relevant role in the biology of MM. [source]


    Systemic levels of plasmin,antiplasmin complexes are correlated with the expansion rate of small abdominal aortic aneurysms

    BRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 4 2001
    J. S. Lindholt
    Background: The cystatine proteolytic system, the serine proteolytic system and the metallodependent proteolytic system have all been reported to be involved in the matrix degradation of the aortic wall, causing abdominal aortic aneurysm (AAA). Plasmin is a common activator of all three systems and could theoretically be involved in the pathogenesis of AAA by activating all three systems. However, plasmin is immediately inactivated by antiplasmin, forming plasmin,antiplasmin (PAP) complexes when it reaches the circulation. This study was designed to assess whether the systemic levels of PAP complex in conservatively treated patients with AAA could be related to the natural history of AAA. Methods: In 1994, 112 of 141 men with AAA (greater than 3 cm) diagnosed by population screening were interviewed, examined, and had blood samples taken and prepared for serum and ethylenediamine tetra-acetic acid plasma by a standard method. The serum and plasma were frozen at , 21°C until analysis. Of the 112 patients, 99 were followed with annual control scans and blood pressure measurements for 1,5 (mean 2·5) years, and were referred for operation if the AAA exceeded 5 cm in diameter. Of the 99 patients, a random sample of 70 had their level of PAP complexes determined (Dade Behring, Rřdovre, Denmark). Furthermore, the level of serum elastin peptides (SEPs) was determined by enzyme-linked immunosorbent assay. Spearman's rank sum correlation test, multivariate linear regression analysis and receiver,operator characteristic (ROC) curve analysis were used for statistical analysis (SPSS 10.0; SPSS, Chicago, Illinois, USA). Results: The level of PAP complex was positively correlated with annual expansion rate (r = 0·29, P = 0·01), but not with the initial AAA size (r = 0·17, P = 0·16) or SEP (r = 0·04, P = 0·77). The significant association to expansion persisted after adjustment for initial AAA size, SEP and smoking. Furthermore, the level of PAP complex was significantly predictive for AAAs expanding to operation recommendable size (area under ROC curve 65 per cent), with an optimal sensitivity and specificity of 65 and 67 per cent respectively. SEP level was also significantly predictive for AAAs expanding to operation recommendable size (area under ROC curve 56 per cent), with an optimal sensitivity and specificity of 56 and 57 per cent. Conclusion: The progression of AAA seems to be caused by a general activation of the proteolytic systems involving plasmin and not by genetic or environmental factors causing increased activation of specific proteases or decreased activity of their specific inhibitors. Furthermore, the level of PAP complex in patients with an aneurysm seems to have a better and independently predictive value of the natural history of AAA, compared with the best serological predictor known to date, the serum level of elastin peptides. © 2001 British Journal of Surgery Society Ltd [source]


    Enhanced matrix degradation after withdrawal of TGF-,1 triggers hepatocytes from apoptosis to proliferation and regeneration

    CELL PROLIFERATION, Issue 5 2005
    E. Arendt
    TGF-,1 is a profibrogenic cytokine participating in deposition of extracellular matrix in fibrotic disorders. In liver, its anti-proliferative/apoptotic effect on hepatocytes promotes fibrosis. The tetracycline-controlled double-transgenic TALAP,2/ptetTGF-,1 mouse provides a model for reversible liver fibrosis. In livers of TGF-,1-expressing mice, hepatocytes showed synchronous apoptosis detected by DNA laddering and active caspase-3 staining that disappeared when expression of transgenic TGF-,1 was switched off. In these ,off' mice, perisinusoidal liver fibrosis resolved within 21 days accompanied by elevated proliferation of hepatocytes. Here, we have specified the intermediary stages (2,3 days off and 6 days off) in terms of (i) proliferation (by immunohistochemical staining of proliferating cell nuclear antigen and expression of cyclin D1 mRNA) and (ii) extracellular matrix remodelling processes (by measuring mRNA expression of matrix metalloproteinases-2 and -13 (mmp-2 and mmp-13) and tissue inhibitor of matrix metalloproteinases 1 (timp-1) and quantitative morphometric analysis. In summary, we show a rapidly declining timp-1 mRNA level together with lastingly high mmp-2 and mmp-13 mRNA levels after 2,3 days, suggesting that high matrix-degrading potential represents a prerequisite for the markedly enhanced proliferation of hepatocytes in the early stages after switching off transgenic TGF-,1. [source]


    Expression of membrane-type 1 matrix metalloproteinase in rheumatoid synovial cells

    CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2001
    S. Honda
    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is thought to be a putative regulator of pro-gelatinase A (MMP-2) in the rheumatoid synovium. In this study, we examined the effects of IL-1,, one of the inflammatory cytokines, on the expression of MT1-MMP and the activation of pro-MMP-2 using rheumatoid synovial cells. We also studied the effects of KE-298 (2-acetylthiomethyl-4-(4-methylphenyl)-4-oxobutanoic acid), a new disease-modifying anti-rheumatic drug (DMARD), on MT1-MMP expression of rheumatoid synovial cells. Type B synovial cells (fibroblast-like synovial cells) were cultured with KE-298 (25,100 µg/ml) in the presence of IL-1, for 48 h. Activation of pro-MMP-2 secreted from synovial cells was analysed by gelatin zymography. Reverse transcription,polymerase chain reaction (RT,PCR) methods were used to detect MT1-MMP mRNA. MT1-MMP protein expression on synovial cells was examined by anti-MT1-MMP immunoblot. An active form of MMP-2 was demonstrated in the culture media conditioned by IL-1,-stimulated synovial cells. In addition, MT1-MMP mRNA and protein expression of rheumatoid synovial cells were increased by IL-1, treatment. KE-298 blocked this IL-1,-induced pro-MMP-2 activation and MT1-MMP expression, but did not affect IL-1,-induced tissue inhibitor of metalloproteinase-2 (TIMP-2) secretion from rheumatoid synovial cells. These findings indicate that activation of rheumatoid synovial cells by IL-1, results in the induction of MT1-MMP expression. Given that MT1-MMP promotes matrix degradation by activating pro-MMP-2, these results suggest a novel mechanism whereby cytokine may contribute to articular destruction in rheumatoid arthritis (RA). KE-298 may prevent this process by down-regulating MT1-MMP expression. [source]