Matrix Components (matrix + component)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Matrix Components

  • extracellular matrix component


  • Selected Abstracts


    Behavior of Cardiomyocytes and Skeletal Muscle Cells on Different Extracellular Matrix Components,Relevance for Cardiac Tissue Engineering

    ARTIFICIAL ORGANS, Issue 1 2007
    Karin Macfelda
    Abstract:, Myocardial cell transplantation in patients with heart failure is emerging as a potential therapeutic option to augment the function of remaining myocytes. Nevertheless, further investigations on basic issues such as ideal cell type continue to be evaluated. Therefore, the aim of our studies was to compare the performance of skeletal muscle cells and cardiomyocytes with respect to their proliferation rate and viability on different extracellular matrix components (EMCs). Rat cardiomyocytes (RCM) and rat skeletal muscle cells (RSMC) were cultured on EMCs such as collagen type I, type IV, laminin, and fibronectin. The components were used as "single coating" as well as "double coating." Proliferation rates were determined by proliferation assays on days 1, 2, 4, and 8 after inoculation of the cells. The most essential result is that collagen type I enhances the proliferation rate of RSMC but decreases the proliferation of RCM significantly. This effect is independent of the second EMC used for the double-coating studies. Other EMCs also influence cellular behavior, whereas the sequence of the EMCs is essential. Results obtained in our studies reveal the significant different proliferation behavior of RCM and RSMC under identical conditions. As skeletal muscle cells are also used in heart tissue engineering models, these results are essential and should be investigated in further studies to prove the applicability of skeletal muscle cells for heart tissue engineering purposes. [source]


    Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates

    ENVIRONMENTAL MICROBIOLOGY, Issue 11 2006
    Susanne Ude
    Summary The ability to form biofilms is seen as an increasingly important colonization strategy among both pathogenic and environmental bacteria. A survey of 185 plant-associated, phytopathogenic, soil and river Pseudomonas isolates resulted in 76% producing biofilms at the air,liquid (A,L) interface after selection in static microcosms. Considerable variation in biofilm phenotype was observed, including waxy aggregations, viscous and floccular masses, and physically cohesive biofilms with continuously varying strengths over 1500-fold. Calcofluor epifluorescent microscopy identified cellulose as the matrix component in biofilms produced by Pseudomonas asplenii, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas savastanoi and Pseudomonas syringae isolates. Cellulose expression and biofilm formation could be induced by the constitutively active WspR19 mutant of the cyclic-di-GMP-associated, GGDEF domain-containing response regulator involved in the P. fluorescens SBW25 wrinkly spreader phenotype and cellular aggregation in Pseudomonas aeruginosa PA01. WspR19 could also induce P. putida KT2440, which otherwise did not produce a biofilm or express cellulose, as well as Escherichia coli K12 and Salmonella typhimurium LT2, both of which express cellulose yet lack WspR homologues. Statistical analysis of biofilm parameters suggest that biofilm development is a more complex process than that simply described by the production of attachment and matrix components and bacterial growth. This complexity was also seen in multivariate analysis as a species-ecological habitat effect, underscoring the fact that in vitro biofilms are abstractions of those surface and volume colonization processes used by bacteria in their natural environments. [source]


    Hyaluronan and its receptors in mucoepidermoid carcinoma

    HEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 2 2006
    Richard O. Wein MD
    Abstract Background. Hyaluronan (HA) is a prominent extracellular matrix component undergoing continuous production and degradation. Increased HA levels have been described in a variety of tumors. The objective of this study was to examine the staining patterns of HA and two of its associated receptors (CD44 and HARE) in relation to the metastatic potential of mucoepidermoid carcinoma (MC). Immunohistochemical staining of preserved surgical specimens was used. Methods. Tissues from 12 patients with a histologic diagnosis of salivary MC (10 parotid, one submandibular gland, one minor salivary gland) were studied. Half (six of 12) of the patients had regional metastases. Tumor, normal salivary tissue, and regional lymph nodes were stained for HA, CD44, and HARE expression. Specimens were graded for staining intensity and a percent of the specimen stained. Results. Normal salivary tissue did not demonstrate epithelial cell surface HA expression, whereas HA was expressed on tumor cells and in regional lymph nodes containing metastases. These differences were both significant using Student's t test (p < .00002, and p < .0022, respectively). Tumors with positive nodes tended to have greater cell surface HA. Decreased expression or downregulation of HARE was also noted in involved lymph nodes. No differences in CD44 expression were seen between primary specimens and lymph nodes. The observed staining patterns for CD44 and HARE were not reflective of the metastatic potential of the primary MC. Conclusions. Increased HA expression was seen on mucoepidermoid carcinoma cells compared with adjacent normal salivary gland epithelium. This observation may assist in explaining the development of regional metastasis in these tumors. We did not identify specific HA, CD44, or HARE staining patterns in primary lesions that were predictive of regional metastases. © 2005 Wiley Periodicals, Inc. Head Neck27: XXX,XXX, 2005 [source]


    PI3K/AKT regulates aggrecan gene expression by modulating Sox9 expression and activity in nucleus pulposus cells of the intervertebral disc

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009
    Chin-Chang Cheng
    The goal of the investigation was to test the hypothesis that the phosphoinositide-3 kinase (PI3K)/AKT signaling pathway regulates the expression of the major extracellular matrix component of the intervertebral disc, aggrecan, in nucleus pulposus cells. Primary rat nucleus pulposus cells were treated with PI3K inhibitor to measure changes in gene and protein expression. In addition, cells were transfected with various luciferase reporter plasmids to investigate mechanisms of regulation of aggrecan gene expression. We found that treatment of nucleus pulposus cells with a PI3K inhibitor, LY294002 resulted in decreased expression of aggrecan and a reduction in deposition of sulfated glycosaminoglycans. Moreover, pharmacological suppression or co-expression of dominant negative (DN)-PI3K or DN-AKT resulted in downregulation of aggrecan promoter activity. Expression of constitutively active (CA)-PI3K significantly induced aggrecan promoter activity. We observed that PI3K maintained Sox9 gene expression and activity: inhibition of PI3K/AKT resulted in decreased Sox9 expression, lowered promoter activity, and mediated a reduction in Sox9 transcriptional activity. PI3K effects were independent of phosphorylation status of C-terminus transactivation domain (TAD) of Sox9. Finally, we noted that in nucleus pulposus cells, PI3K signaling controlled transactivation of p300 (p300-TAD activity), an important transcriptional co-activator of Sox9. Results of these studies demonstrate for the first time that PI3K/AKT signaling controls aggrecan gene expression, in part by modulating Sox9 expression and activity in cells of the nucleus pulposus. J. Cell. Physiol. 221: 668,676, 2009. © 2009 Wiley-Liss, Inc. [source]


    Matrix metalloproteinase 11 (MMP-11; stromelysin-3) and synthetic inhibitors

    MEDICINAL RESEARCH REVIEWS, Issue 4 2007
    Magdalini Matziari
    Abstract Matrix metalloproteinase (MMP)-11, or Stromelysin 3, is a particular member of MMP family, a group of zinc-dependent endopeptidases involved in matrix degradation and tissue remodeling. Despite intense efforts since its first characterization 15 years ago, its role and target substrates in different diseases remain largely unknown. While mice with MMP-11 deficiency display no particular phenotype, analysis of different tumorigenesis models with these mice lead to the conclusion that MMP-11 promotes tumor development. In contrast with other MMPs, MMP-11 is unable to degrade any major extracellular matrix component and unlike most of other MMPs that are secreted as inactive proenzymes and activated extracellularly, MMP-11 is secreted under active form. MMP-11 may thus play a unique role in tissue remodeling processes, including those associated with tumor progression. Although MMP-11 and other MMPs have been considered as promising targets to combat cancer, a first series of clinical trials using broad-spectrum MMP inhibitors have not led to significant therapeutic benefits. These disappointing results highlight the need for better understanding of the exact role played by each MMP during the different stages of tumor progression. Among the different strategies to fill this gap, highly specific MMP inhibitors would be of great value. This review provides an update on the selectivity profile of phosphinic MMP-11 synthetic inhibitors developed and discusses the opportunities and limitations to identify inhibitors able to fully discriminate MMP-11 from the other MMPs. © 2006 Wiley Periodicals, Inc. Med Res Rev, 27, No. 4, 528,552, 2007 [source]


    4411: Immunohistochemical methods to evaluate vitreoretinal scaring

    ACTA OPHTHALMOLOGICA, Issue 2010
    ML BOCHATON-PIALLAT
    Purpose Formation of scarlike epiretinal membranes (ERMs) constitutes potentially the end stage of evolution of proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy (PDR) and idiopathic vitreoretinopathy. Among various cellular populations, ERMs contain cells with contractile features typical of myofibroblasts. Myofibroblasts have been described in granulation tissue during wound healing and in practically all fibrocontractive diseases, in which they participate in the generation of isometric tension and in the synthesis of extracellular matrix components; these phenomena are in turn responsible for granulation tissue remodeling and retraction. The main marker of the myofibroblastic phenotype is the expression of alpha-SMA. The transforming growth factor-beta1 and the ED-A splice variant of cellular fibronectin, an extracellular matrix component, are key players of the complex process of myofibroblast differentiation. Methods Proteins were detected by means of immunohistochemical staining on paraffin sections from formol fixed tissues and double immunofluorescence staining on whole tissues. Samples were observed by using classical light and confocal microscopes. Results The presence of alpha-SM actin-positive myofibroblasts was associated with the expression of TGF-beta1, TGF-beta receptor II, and ED-A FN in all types of ERMs studied. Conclusion The results furnish new data on the mechanism of alpha-SM actin stimulation in fibroblasts in a human pathologic setting. [source]


    Connective tissue growth factor and cardiac fibrosis

    ACTA PHYSIOLOGICA, Issue 3 2009
    A. Daniels
    Abstract Cardiac fibrosis is a major pathogenic factor in a variety of cardiovascular diseases and refers to an excessive deposition of extracellular matrix components in the heart, which leads to cardiac dysfunction and eventually overt heart failure. Evidence is accumulating for a crucial role of connective tissue growth factor (CTGF) in fibrotic processes in several tissues including the heart. CTGF orchestrates the actions of important local factors evoking cardiac fibrosis. The central role of CTGF as a matricellular protein modulating the fibrotic process in cardiac remodelling makes it a possible biomarker for cardiac fibrosis and a potential candidate for therapeutic intervention to mitigate fibrosis in the heart. [source]


    A New Indirect Electroanalytical Method to Monitor the Contamination of Natural Waters with 4-Nitrophenol Using Multiwall Carbon Nanotubes

    ELECTROANALYSIS, Issue 9 2009
    Cruz Moraes, Fernando
    Abstract The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedance spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700,mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12,,mol L,1) was lower than the value advised by EPA. A natural water sample from a dam located in São Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using the GC/MWCNT electrode, without any further purification step. The recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection. [source]


    Determination of ethyl sulfate , a marker for recent ethanol consumption , in human urine by CE with indirect UV detection

    ELECTROPHORESIS, Issue 23 2006
    Francesc A. Esteve-Turrillas
    Abstract A CE method for the determination of the ethanol consumption marker ethyl sulfate,(EtS) in human urine was developed. Analysis was performed in negative polarity mode with a background electrolyte composed of 15,mM maleic acid, 1,mM phthalic acid, and 0.05,mM cetyltrimethylammonium bromide (CTAB) at pH,2.5 and indirect UV detection at 220,nm (300,nm reference wavelength). This buffer system provided selective separation conditions for EtS and vinylsulfonic acid, employed as internal standard, from urine matrix components. Sample pretreatment of urine was minimized to a 1:5 dilution with water. The optimized CE method was validated in the range of 5,700,mg/L using seven lots of urine. Intra- and inter-day precision and accuracy values, determined at 5, 60, and 700,mg/L with each lot of urine, fulfilled the requirements according to common guidelines for bioanalytical method validation. The application to forensic urine samples collected at autopsies as well as a successful cross-validation with a LC-MS/MS-based method confirmed the overall validity and real-world suitability of the developed expeditious CE assay (sample throughput 130 per day). [source]


    Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates

    ENVIRONMENTAL MICROBIOLOGY, Issue 11 2006
    Susanne Ude
    Summary The ability to form biofilms is seen as an increasingly important colonization strategy among both pathogenic and environmental bacteria. A survey of 185 plant-associated, phytopathogenic, soil and river Pseudomonas isolates resulted in 76% producing biofilms at the air,liquid (A,L) interface after selection in static microcosms. Considerable variation in biofilm phenotype was observed, including waxy aggregations, viscous and floccular masses, and physically cohesive biofilms with continuously varying strengths over 1500-fold. Calcofluor epifluorescent microscopy identified cellulose as the matrix component in biofilms produced by Pseudomonas asplenii, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas savastanoi and Pseudomonas syringae isolates. Cellulose expression and biofilm formation could be induced by the constitutively active WspR19 mutant of the cyclic-di-GMP-associated, GGDEF domain-containing response regulator involved in the P. fluorescens SBW25 wrinkly spreader phenotype and cellular aggregation in Pseudomonas aeruginosa PA01. WspR19 could also induce P. putida KT2440, which otherwise did not produce a biofilm or express cellulose, as well as Escherichia coli K12 and Salmonella typhimurium LT2, both of which express cellulose yet lack WspR homologues. Statistical analysis of biofilm parameters suggest that biofilm development is a more complex process than that simply described by the production of attachment and matrix components and bacterial growth. This complexity was also seen in multivariate analysis as a species-ecological habitat effect, underscoring the fact that in vitro biofilms are abstractions of those surface and volume colonization processes used by bacteria in their natural environments. [source]


    New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 12 2004
    G. Wolf
    Abstract Although debated for many years whether haemodynamic or structural changes are more important in the development of diabetic nephropathy, it is now clear that these processes are interwoven and present two sides of one coin. On a molecular level, hyperglycaemia and proteins altered by high blood glucose such as Amadori products and advanced glycation end-products (AGEs) are key players in the development of diabetic nephropathy. Recent evidence suggests that an increase in reactive oxygen species (ROS) formation induced by high glucose-mediated activation of the mitochondrial electron-transport chain is an early event in the development of diabetic complications. A variety of growth factors and cytokines are then induced through complex signal transduction pathways involving protein kinase C, mitogen-activated protein kinases, and the transcription factor NF-,B. High glucose, AGEs, and ROS act in concert to induce growth factors and cytokines. Particularly, TGF-, is important in the development of renal hypertrophy and accumulation of extracellular matrix components. Activation of the renin-angiotensin system by high glucose, mechanical stress, and proteinuria with an increase in local formation of angiotensin II (ANG II) causes many of the pathophysiological changes associated with diabetic nephropathy. In fact, it has been shown that angiotensin II is involved in almost every pathophysiological process implicated in the development of diabetic nephropathy (haemodynamic changes, hypertrophy, extracellular matrix accumulation, growth factor/cytokine induction, ROS formation, podocyte damage, proteinuria, interstitial inflammation). Consequently, blocking these deleterious effects of ANG II is an essential part of every therapeutic regiment to prevent and treat diabetic nephropathy. Recent evidence suggests that regression of diabetic nephropathy could be achieved under certain circumstances. [source]


    Extracts from Glycine max (soybean) induce elastin synthesis and inhibit elastase activity

    EXPERIMENTAL DERMATOLOGY, Issue 10 2009
    Renbin Zhao
    Abstract:, Elastic fibres are essential extracellular matrix components of the skin, contributing to its resilience and elasticity. In the course of skin ageing, elastin synthesis is reduced, and elastase activity is accelerated, resulting in skin sagging and reduced skin elasticity. Our studies show that non-denatured Glycine max (soybean) extracts induced elastin promoter activity, inhibited elastase activity and protected elastic fibres from degradation by exogenous elastases in vitro. Mouse and swine skins topically treated with soybean extracts showed enhanced elastic fibre network and increased desmosine content. Elastin expression was also augmented in human skin transplanted onto SCID mice in response to soy treatment. These data suggest that non-denatured soybean extracts may be used as skin care agents to reduce the signs of skin ageing. [source]


    Serum-free cultured keratinocytes fail to organize fibronectin matrix and possess different distribution of beta-1 integrins

    EXPERIMENTAL DERMATOLOGY, Issue 2 2001
    G. Altankov
    Abstract: The development of serum free medium formulation for culturing keratinocytes was a breakthrough in achieving a high number of epidermal cells for experimental and therapeutic studies, in particular to support the wound healing process. It is not clear, however, if switching the cells to highly proliferative phenotype may reflect change in other cellular functions important for the wound repair as their adhesive interactions with the extracellular matrix components. Remodelling of the extracellular matrix, particularly of fibronectin plays an essential role for guiding the cells during wound healing. The molecular mechanisms for organization of this provisional fibronectin matrix, however, are still not clear. We found that keratinocytes in serum containing medium, although in fewer numbers than fibroblasts, were able to remove adsorbed fluorescent labelled fibronectin from the substratum and reorganize it in a fibrilar pattern along the cell periphery. After 3 days the secreted fibronectin had also been organized as matrix-like fibers and as clusters deposited on the substratum after migrating cells. In contrast, serum free cultured keratinocytes fail to organize pre-adsorbed fluorescent labelled fibronectin, as well as the secreted fibronectin, although they grow very well under these conditions. Switching the cells to serum containing medium initiates the removal of fluorescent labelled fibronectin from the substratum, however without reorganization in fibrillar pattern. Most likely, these keratinocytes remove fluorescent labelled fibronectin by the expression of proteolytic activity, rather than with the mechanical function of ,1 integrins. The latter were diffusely dispersed in serum containing conditions and tend to organize in focal adhesions in serum free cultured cells. We assumed their transient expression and different affinity state might be important for the keratinocyte migration and matrix assembly mechanism. [source]


    Characterization of chitinase-like proteins (Cg -Clp1 and Cg -Clp2) involved in immune defence of the mollusc Crassostrea gigas

    FEBS JOURNAL, Issue 14 2007
    Fabien Badariotti
    Chitinase-like proteins have been identified in insects and mammals as nonenzymatic members of the glycoside hydrolase family 18. Recently, the first molluscan chitinase-like protein, named Crassostrea gigas (Cg)-Clp1, was shown to control the proliferation and synthesis of extracellular matrix components of mammalian chondrocytes. However, the precise physiological roles of Cg -Clp1 in oysters remain unknown. Here, we report the cloning and the characterization of a new chitinase-like protein (Cg -Clp2) from the oyster Crassostrea gigas. Gene expression profiles monitored by quantitative RT-PCR in adult tissues and through development support its involvement in tissue growth and remodelling. Both Cg -Clp1- and Cg -Clp2-encoding genes were transcriptionally stimulated in haemocytes in response to bacterial lipopolysaccharide challenge, strongly suggesting that these two close paralogous genes play a role in oyster immunity. [source]


    Matrix metalloproteinase-2 is involved in myelination of dorsal root ganglia neurons

    GLIA, Issue 5 2009
    Helmar C. Lehmann
    Abstract Matrix metalloproteinases (MMPs) comprise a large family of endopeptidases that are capable of degrading all extracellular matrix components. There is increasing evidence that MMPs are not only involved in tissue destruction but may also exert beneficial effects during axonal regeneration and nerve remyelination. Here, we provide evidence that MMP-2 (gelatinase A) is associated with the physiological process of myelination in the peripheral nervous system (PNS). In a myelinating co-culture model of Schwann cells and dorsal root ganglia neurons, MMP-2 expression correlated with the degree of myelination as determined by immunocytochemistry, zymography, and immunosorbent assay. Modulation of MMP-2 activity by chemical inhibitors led to incomplete and aberrant myelin formation. In vivo MMP-2 expression was detected in the cerebrospinal fluid (CSF) of patients with Guillain-Barré syndrome as well as in CSF and sural nerve biopsies of patients with chronic inflammatory demyelinating polyneuropathy. Our findings suggest an important, previously unrecognized role for MMP-2 during myelination in the PNS. Endogenous or exogenous modulation of MMP-2 activity may be a relevant target to enhance regeneration in demyelinating diseases of the PNS. © 2008 Wiley-Liss, Inc. [source]


    Role of metalloproteins in the clinical management of head and neck squamous cell carcinoma

    HEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 12 2007
    W. Cooper Scurry Jr. MD
    Abstract Metalloproteins are a group of catalytic proteins, which play significant roles in cell cycle and death. Matrix metalloproteinases (MMPs) are a family of endopeptidases that are capable of digesting extracellular matrix components. They have been implicated in carcinogenesis and recent developments have been made to use MMPs clinically to predict outcomes. In the future, selective inhibition of these proteins and their regulatory pathways may prove useful in anticancer therapeutics. We present a review article on the clinical applications of metalloproteins in head and neck squamous cell carcinoma (HNSCC). Metalopanstimulin is highlighted as a putative metalloprotein of interest for those treating HNSCC. Expression of particular metalloproteins has correlation with lymph node metastasis, tumor invasiveness, and overall prognosis in HNSCC. © 2007 Wiley Periodicals, Inc. Head Neck 2007 [source]


    Protection of estrogens against the progression of chronic liver disease

    HEPATOLOGY RESEARCH, Issue 4 2007
    Ichiro Shimizu
    Hepatitis C virus infections are recognized as a major causative factor of chronic liver disease. A characteristic feature of chronic hepatitis C, alcoholic liver disease and non-alcoholic fatty liver disease is hepatic steatosis. Hepatic steatosis leads to an increase in lipid peroxidation in hepatocytes, which, in turn, activates hepatic stellate cells (HSCs). HSCs are also thought to be the primary target cells for inflammatory and oxidative stimuli, and to produce extracellular matrix components. Based on available clinical information, chronic hepatitis C appears to progress more rapidly in men than in women, and cirrhosis is predominately a disease of men and postmenopausal women. Estradiol is a potent endogenous antioxidant. Hepatic steatosis was reported to become evident in an aromatase-deficient mouse and was diminished in animals after treatment with estradiol. Our previous studies showed that estradiol suppressed hepatic fibrosis in animal models, and attenuated HSC activation by suppressing the generation of reactive oxygen species in primary cultures. Variant estrogen receptors were found to be expressed to a greater extent in male patients with chronic liver disease than in female subjects. A better understanding of the basic mechanisms underlying the gender-associated differences observed in the progression of chronic liver disease would provide valuable information relative to the search for effective antifibrogenic therapies. [source]


    Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications

    ADVANCED MATERIALS, Issue 4 2010
    Thomas Boudou
    Abstract The design of advanced functional materials with nanometer- and micrometer-scale control over their properties is of considerable interest for both fundamental and applied studies because of the many potential applications for these materials in the fields of biomedical materials, tissue engineering, and regenerative medicine. The layer-by-layer deposition technique introduced in the early 1990s by Decher, Moehwald, and Lvov is a versatile technique, which has attracted an increasing number of researchers in recent years due to its wide range of advantages for biomedical applications: ease of preparation under "mild" conditions compatible with physiological media, capability of incorporating bioactive molecules, extra-cellular matrix components and biopolymers in the films, tunable mechanical properties, and spatio-temporal control over film organization. The last few years have seen a significant increase in reports exploring the possibilities offered by diffusing molecules into films to control their internal structures or design "reservoirs," as well as control their mechanical properties. Such properties, associated with the chemical properties of films, are particularly important for designing biomedical devices that contain bioactive molecules. In this review, we highlight recent work on designing and controlling film properties at the nanometer and micrometer scales with a view to developing new biomaterial coatings, tissue engineered constructs that could mimic in vivo cellular microenvironments, and stem cell "niches." [source]


    Finasteride treatment alters MMP-2 and -9 gene expression and activity in the rat ventral prostate

    INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2010
    Flávia K. Delella
    Summary The safety of using finasteride as a prevention of prostate cancer is still under debate. In this study, we investigated the effects of finasteride on the location, gene expression and activities of matrix metalloproteinases -2 and -9, which are involved in the degradation of extracellular matrix components during tissue remodelling and prostate cancer progression, invasion and metastasis. Ventral prostates (VP) from Wistar rats treated with finasteride (25 mg/kg/day) for 7 and 30 days and age-matched controls were evaluated using histology, immunohistochemistry, semi-quantitative RT-PCR and gelatin zymography. Finasteride treatment reduced the epithelial immunostaining of MMP-2 but increased MMP-9 immunostaining in the epithelial cells and in the stroma. The mRNA expression of both MMP-2 and MMP-9 were significantly increased on day 7 of finasteride treatment, mainly for MMP-9 and returned to the control levels by day 30. However, gelatin zymography showed that MMP-9 activity was significantly increased on day 7 of finasteride treatment and remained elevated on day 30 (p < 0.05), while MMP-2 activity was reduced after 30 days of treatment. Finasteride increases MMP-9 and reduces MMP-2 activities in the prostate, which may affect negatively and positively both normal and tumoural prostatic cell behaviour during the treatment. Studies on expression of MMPs in the prostate during different androgen manipulation or cancer chemoprevention strategies can contribute to understand the tissue's overall response and clinical data. [source]


    Disc structure function and its potential for repair

    INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, Issue 1 2002
    J. Melrose
    The intervertebral disc (IVD) is the largest predominantly avascular, aneural, alymphatic structure of the human body. It provides articulation between adjoining vertebral bodies and also acts as a weight-bearing cushion dissipating axially applied spinal loads. The IVD is composed of an outer collagen-rich annulus fibrosus (AF) and a central proteoglycan (PG)-rich nucleus pulposus (NP). Superior and inferior cartilaginous endplates (CEPs), thin layers of hyaline-like cartilage, cover the ends of the vertebral bodies. The AF is composed of concentric layers (lamellae) which contain variable proportions of type I and II collagen, this tissue has high tensile strength. The NP in contrast is a gelatinous PG-rich tissue which provides weight-bearing properties to the composite disc structure. With the onset of age, cells in the NP progressively die as this tissue becomes depleted of PGs, less hydrated and more fibrous as the disc undergoes an age-dependent fibrocartilaginous transformation. Such age-dependent cellular and matrix changes can decrease the discs' biomechanical competence and trauma can further lead to failure of structural components of the disc. Annular defects are fairly common and include vertebral rim-lesions, concentric (circumferential) annular tears (separation of adjacent annular lamellae) and radial annular tears (clefts which initiate within the NP). While vascular in-growth around annular tears has been noted, evidence from human post-mortem studies indicate they have a limited ability to undergo repair. Several experimental approaches are currently under evaluation for their ability to promote the repair of such annular lesions. These include growth of AF fibrochondrocytes on a resorbable polycaprolactone (PCL) bio-membrane.1 Sheets of fibrochondrocytes lay down type-I collagen and actin stress fibres on PCL. These matrix components are important for the spatial assembly of the collagenous lamella during annular development and correct phenotypic expression of cells in biomatrices.1 An alternative approach employs preparation of tissue engineered IVDs where AF and NP cells are separately cultured in polyglycolic acid and sodium alginate biomatrices, either separately or within a manifold designed to reproduce the required IVD dimensions for its use as a prospective implant device.2 AF and NP cells have also been grown on tissue culture inserts after their recovery from alginate bead culture to form plugs of tissue engineered cartilage.3 A key component in this latter strategy was the stimulation of the high density disc cell cultures with osteogenic protein-1 (OP-1) 200 ng/mL.3 This resulted in the production of tissue engineered AF and NP plugs with compositions, histochemical characteristics and biomechanical properties approaching those of the native disc tissues.2,3 Such materials hold reat promise in future applications as disc or annular implants. The introduction of appropriate genes into disc cells by gene transduction methodology using adenoviral vectors or ,gene-gun' delivery systems also holds considerable promise for the promotion of disc repair processes.4 Such an approach with the OP-1 gene is particularly appealing.5 The anchoring of discal implants to vertebral bodies has also been evaluated by several approaches. A 3D fabric based polyethylene biocomposite holds much promise as one such anchorage device6 while biological glues used to seal fibrocartilaginous structures such as the AF and meniscus8 following surgical intervention, also hold promise in this area. Several very promising new experimental approaches and strategies are therefore currently under evaluation for the improvement of discal repair. The aforementioned IVD defects are a common cause of disc failure and sites of increased nerve in-growth in symptomatic IVDs in man and are thus often sources of sciatic-type pain. Annular defects such as those described above have formerly been considered incapable of undergoing spontaneous repair thus a clear need exists for interventions which might improve on their repair. Based on the rapid rate of progress and the examples outlined above one may optimistically suggest that a successful remedy to this troublesome clinical entity will be developed in the not so distant future. References 1JohnsonWEBet al. (2001) Directed cytoskeletal orientation and intervertebral disc cell growth: towards the development of annular repair techniques. Trans Orthop Res Soc26, 894. 2MizunoHet al. (2001) Tissue engineering of a composite intervertebral disc. Trans Orthop Res Soc26, 78. 3MatsumotoTet al. (2001) Formation of transplantable disc shaped tissues by nucleus pulposus and annulus fibrosus cells: biochemical and biomechanical properties. Trans Orthop Res Soc26, 897. 4NishidaKet al. (2000) Potential applications of gene therapy to the treatment of intervertebral disc disorders. Clin Orthop Rel Res379 (Suppl), S234,S241. 5MatsumotoTet al. (2001) Transfer of osteogenic protein-1 gene by gene gun system promotes matrix synthesis in bovine intervertebral disc and articular cartilage cells. Trans Orthop Res Soc26, 30. 6ShikinamiY , Kawarada (1998) Potential application of a triaxial three-dimensional fabric (3-DF) as an implant. Biomaterials19, 617,35. [source]


    Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair

    JOURNAL OF ANATOMY, Issue 5 2008
    G. Pasquinelli
    Summary The fabrication of biodegradable 3-D scaffolds enriched with multipotent stem cells seems to be a promising strategy for the repair of irreversibly injured tissues. The fine mechanisms of the interaction of rat mesenchymal stem cells (rMSCs) with a hyaluronan-based scaffold, i.e. HYAFF®11, were investigated to evaluate the potential clinical application of this kind of engineered construct. rMSCs were seeded (2 × 106 cells cm,2) on the scaffold, cultured up to 21 days and analysed using appropriate techniques. Light (LM), scanning (SEM) and transmission (TEM) electron microscopy of untreated scaffold samples showed that scaffolds have a highly porous structure and are composed of 15-µm-thick microfibres having a rough surface. As detected by trypan blue stain, cell adhesion was high at day 1. rMSCs were viable up to 14 days as shown by CFDA assay and proliferated steadily on the scaffold as revealed by MTT assay. LM showed rMSCs in the innermost portions of the scaffold at day 3. SEM revealed a subconfluent cell monolayer covering 40 ± 10% of the scaffold surface at day 21. TEM of early culture showed rMSCs wrapping individual fibres with regularly spaced focal contacts, whereas confocal microscopy showed polarized expression of CD44 hyaluronan receptor; TEM of 14-day cultures evidenced fibronexus formation. Immunohistochemistry of 21-day cultures showed that fibronectin was the main matrix protein secreted in the extracellular space; decorin and versican were seen in the cell cytoplasm only and type IV collagen was minimally expressed. The expression of CD90, a marker of mesenchymal stemness, was found unaffected at the end of cell culture. Our results show that HYAFF®11 scaffolds support the adhesion, migration and proliferation of rMSCs, as well as the synthesis and delivery of extracellular matrix components under static culture conditions without any chemical induction. The high retention rate and viability of the seeded cells as well as their fine modality of interaction with the substrate suggest that such scaffolds could be potentially useful when wide tissue defects are to be repaired as in the case of cartilage repair, wound healing and large vessel replacement. [source]


    Increased Bone Formation in Mice Lacking Plasminogen Activators,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2003
    E Daci
    Abstract Plasminogen activators tPA and uPA are involved in tissue remodeling, but their role in bone growth is undefined. Mice lacking tPA and uPA show increased bone formation and bone mass. The noncollagenous components of bone matrix are also increased, probably from defective degradation. This study underlines the importance of controlled bone matrix remodeling for normal endochondral ossification. Introduction: Proteolytic pathways are suggested to play a role in endochondral ossification. To elucidate the involvement of the plasminogen activators tPA and uPA in this process, we characterized the long bone phenotype in mice deficient in both tPA and uPA (tPA,/,:uPA,/,). Materials and Methods: Bones of 2- to 7-day-old tPA,/,:uPA,/, and wild-type (WT) mice were studied using bone histomorphometry, electron microscopy analysis, and biochemical assessment of bone matrix components. Cell-mediated degradation of metabolically labeled bone matrix, osteoblast proliferation, and osteoblast differentiation, both at the gene and protein level, were studied in vitro using cells derived from both genotypes. Results: Deficiency of the plasminogen activators led to elongation of the bones and to increased bone mass (25% more trabecular bone in the proximal tibial metaphysis), without altering the morphology of the growth plate. In addition, the composition of bone matrix was modified in plasminogen activator deficient mice, because an increased amount of proteoglycans (2×), osteocalcin (+45%), and fibronectin (+36%) was detected. Matrix degradation assays showed that plasminogen activators, by generating plasmin, participate in osteoblast-mediated degradation of the noncollagenous components of bone matrix. In addition, proliferation of primary osteoblasts derived from plasminogen activator-deficient mice was increased by 35%. Finally, osteoblast differentiation and formation of a mineralized bone matrix were enhanced in osteoblast cultures derived from tPA,/,:uPA,/, mice. Conclusions: The data presented indicate the importance of the plasminogen system in degradation of the noncollagenous components of bone matrix and suggest that the accumulation of these proteins in bone matrix,as occurs during plasminogen activator deficiency,may in turn stimulate osteoblast function, resulting in increased bone formation. [source]


    Role of D1 and E Cyclins in Cell Cycle Progression of Human Fibroblasts Adhering to Cementum Attachment Protein,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2001
    Takayoshi Yokokoji
    Abstract Cementum attachment protein (CAP) is a collagenous protein present in the matrix of tooth cementum that mediates preferential attachment of some mesenchymal cell types, and CAP binding capacity is related to mineralizing tissue-forming capacity in culture. We have examined if adhesion to surfaces containing CAP as the only attachment protein permits human fibroblasts to escape G1 arrest and synthesize DNA, and if adhesion to CAP modulates the levels of cyclins D1 and E. Human gingival fibroblasts (HGFs) were serum-starved, trypsinized, and added to plates coated with CAP or bovine serum albumin (BSA). Cells were then exposed to either 10% fetal bovine serum (FBS) or to cementum-derived growth factor (CGF), an insulin-like growth factor I (IGF-I)-like molecule sequestered in tooth cementum, plus epidermal growth factor (EGF). DNA synthesis was measured as [3H]thymidine uptake, and cyclin D1 and E levels were determined by Western analysis. Cyclin E-dependent kinase (Cdk) activity was assessed in terms of H1 kinase activity in immunoprecipitates of cyclin E. Cells adhering to CAP synthesized DNA, whereas on BSA they remained unattached and did not synthesize DNA. Protein levels of cyclin D1 were higher in cells adhering to CAP in the absence and presence of growth factors. Cyclin E levels were not affected by adhesion alone, but they increased in the presence of growth factors. Cyclin E-associated kinase activity was higher in cells adherent on CAP, and it increased further in the presence of growth factors. Our results indicate that adhesion to CAP increases cyclin D1 levels and cyclin E-associated Cdk activity, and that these increases contribute to cell cycle progression. We previously observed that the signaling reactions induced during adhesion are characteristic of the CAP; together these observations indicate that specific matrix components present in the local environment can contribute to recruitment and differentiation of specific cell types for normal homeostasis and wound healing. [source]


    Modulation of expression of LDH isoenzymes in endothelial cells by laminin: Implications for angiogenesis

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008
    V.B. Sameer Kumar
    Abstract Endothelial cell (EC) matrix interaction is critical in angiogenesis. Although matrix components can regulate the process of angiogenesis by acting as a reservoir of various cytokines, it is not clear if extracellular matrix (ECM) can modulate the production and activity of angiogenic cytokines. Investigations were therefore carried out to study the influence of the basement membrane (BM) protein, laminin (Ln) on the activity of vascular endothelial growth factor (VEGF), the major angiogenic cytokine, using isolated human umbilical vein ECs (HUVECs) in culture. Analysis of the biochemical markers of angiogenesis confirmed proangiogenic effect of Ln. The levels of VEGF protein and mRNA were not different in cells maintained on Ln, collagen I or polylysine substrata. Chorioallantoic membrane assay using VEGF isolated from cell extracts however revealed that Ln increased its angiogenic potency. Immunoblotting and HPLC analysis showed considerable reduction in poly adenosyl ribosylation of VEGF associated with a significant decrease in the levels of NAD+, in cells maintained on Ln substrata. Further, a shift in the isoenzymic pattern of LDH towards the B rich forms and an upregulation of LDH B gene were observed in cells maintained on Ln. Ln modulates expression of LDH gene through ,6,4 integrin mediated downstream signaling involving p38 mitogen activated protein kinases (MAPK) pathway. It thus appears that Ln can affect aerobic metabolism of ECs by modulating the expression of LDH isoenzymes resulting in a decrease in the level of NAD+ that can cause a reduction in the poly adenosyl ribosylation of VEGF altering its angiogenic potency. J. Cell. Biochem. 103: 1808,1825, 2008. © 2007 Wiley-Liss, Inc. [source]


    Stromelysin-3 suppresses tumor cell apoptosis in a murine model,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2001
    Erxi Wu
    Abstract Stromelysin-3 (STR-3) is a matrix metalloproteinase with a unique pattern of expression and substrate specificity. During embryogenesis and remodeling of normal adult tissues, STR-3 is produced by stromal cells in direct contact with epithelial cells undergoing regional apoptosis and selective cell survival. STR-3 is also overexpressed by interdigitating stromal cells in primary epithelial malignancies. Although STR-3 does not degrade classic extracellular matrix components, the enzyme promotes the establishment of local tumors in nude mice by as yet undefined mechanisms. STR-3 is induced when malignant epithelial cells come into contact with surrounding stromal elements; the active stromal cell-derived 45 kDa enzyme is subsequently processed to a 35 kDa protein without enzymatic activity. We have generated MCF-7 transfectants expressing wild type or catalytically inactive 45 kDa STR-3 (STR-3wt and STR-3cat- ) or secreted 35 kDa STR-3 (35 kDa STR-3sec) and evaluated their implantation and survival in nude mice. Tumors developed significantly more rapidly in animals receiving STR-3wt, rather than vector-only, STR-3cat- or 35 kDa STR-3sec transfectants. Most importantly, STR-3wt tumors had a significantly lower percentage of apoptotic cells than tumors derived from vector-only, STR-3cat- or 35 kDa STR-3sec transfectants. Taken together, these studies suggest that the active STR-3 enzyme may increase tumor take by suppressing tumor cell apoptosis and that 45 kDa to 35 kDa STR-3 processing limits STR-3 activity at the tumor/stromal interface. Because STR-3 is secreted as an active enzyme rather than a proform, subsequent 45 kDa to 35 kDa STR-3 processing may represent a novel mechanism for regulating enzymatic activity. J. Cell. Biochem. 82: 549,555, 2001. © 2001 Wiley-Liss, Inc. [source]


    Single Laboratory Method Performance Evaluation for the Analysis of Total Food Folate by Trienzyme Extraction and Microplate Assay

    JOURNAL OF FOOD SCIENCE, Issue 5 2007
    L. Chen
    ABSTRACT:, Single laboratory method performance parameters, including the calibration curve, accuracy, recovery, precision, limit of detection (LOD), and limit of quantification (LOQ), were evaluated for the analysis of total food folate by the trienzyme extraction and microplate assay with Lactobacillus casei subsp. rhamnosus. Standard Reference Material (SRM) 1546 (meat homogenate), SRM 2383 (baby food composite), SRM 1846 (infant formula), Certified Reference Material (CRM) 121 (wholemeal flour), and CRM 485 (mixed vegetables), representing a broad selection of food matrices, were used to evaluate the performance of the method. A generated 4-parameter logistic equation of the calibration curve was y= (0.0705 , 1.0396)/(1 + (x/0.0165) 1.3072) + 1.0396 (P < 0.0001). The test of parallelism demonstrated that matrix components in the food extracts did not affect the accuracy. Measured values of the SRMs and CRMs were within their certified or reference values. Recoveries for all reference materials met the requirements of the AOAC guidelines for single laboratory validation. Precision measured as repeatability, including simultaneous and consecutive replicates for each SRM and CRM, met the Horwitz criterion. LOD and LOQ values were 0.3 and 0.6 ,g/100 g, respectively. The results showed that trienzyme digestion using ,-amylase, PronaseR, and conjugase from chicken pancreas coupled with a 96-well microplate assay provided a highly accurate, reproducible, and sensitive method for the determination of folate in a variety of foods. [source]


    Posthatching development of Alligator mississippiensis ovary and testis

    JOURNAL OF MORPHOLOGY, Issue 5 2010
    Brandon C. Moore
    Abstract We investigated ovary and testis development of Alligator mississippiensis during the first 5 months posthatch. To better describe follicle assembly and seminiferous cord development, we used histochemical techniques to detect carbohydrate-rich extracellular matrix components in 1-week, 1-month, 3-month, and 5-month-old gonads. We found profound morphological changes in both ovary and testis. During this time, oogenesis progressed up to diplotene arrest and meiotic germ cells increasingly interacted with follicular cells. Concomitant with follicles becoming invested with full complements of granulosa cells, a periodic acid Schiff's (PAS)-positive basement membrane formed. As follicles enlarged and thecal layers were observed, basement membranes and thecal compartments gained periodic acid-methionine silver (PAMS)-reactive fibers. The ovarian medulla increased first PAS- and then PAMS reactivity as it fragmented into wide lacunae lined with low cuboidal to squamous epithelia. During this same period, testicular germ cells found along the tubule margins were observed progressing from spermatogonia to round spermatids located within the center of tubules. Accompanying this meiotic development, interstitial Leydig cell clusters become more visible and testicular capsules thickened. During the observed testis development, the thickening tunica albuginea and widening interstitial tissues showed increasing PAS- and PAMS reactivity. We observed putative intersex structures in both ovary and testis. On the coelomic aspect of testes were cell clusters with germ cell morphology and at the posterior end of ovaries, we observed "medullary rests" resembling immature testis cords. We hypothesize laboratory conditions accelerated gonad maturation due to optimum conditions, including nutrients and temperature. Laboratory alligators grew more rapidly and with increased body conditions compared with previous measured, field-caught animals. Additionally, we predict the morphological maturation observed in these gonads is concomitant with increased endocrine activities. J. Morphol. 2010. © 2009 Wiley-Liss, Inc. [source]


    Intervertebral disc cell response to dynamic compression is age and frequency dependent,

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2009
    Casey L. Korecki
    Abstract The maintenance of the intervertebral disc extracellular matrix is regulated by mechanical loading, nutrition, and the accumulation of matrix proteins and cytokines that are affected by both aging and degeneration. Evidence suggests that cellular aging may lead to alterations in the quantity and quality of extracellular matrix produced. The aims of this study were to examine the role of loading and maturation (a subset of aging), and the interaction between these two factors in intervertebral disc cell gene expression and biosynthesis in a controlled 3D culture environment. Cells were isolated from young (4,6 months) and mature (18,24 months) bovine caudal annulus fibrosus and nucleus pulposus tissue. Isolated cells were seeded into alginate and dynamically compressed for 7 days at either 0.1, 1, or 3 Hz or maintained as a free-swelling control. After 7 days, DNA and sulfated glycosaminoglycan contents were analyzed along with real time, quantitative reverse transcription-polymerase chain reaction analysis for collagen types I and II, aggrecan, and matrix metalloproteinase-3 gene expression. Results suggest that maturation plays an important role in intervertebral disc homeostasis and influences the cell response to mechanical loading. While isolated intervertebral disc cells responded to mechanical compression in 3D culture, the effect of loading frequency was minimal. Altered cellular phenotype and biosynthesis rates appear to be an attribute of the cell maturation process, potentially independent of changes in cellular microenvironment associated with lost nutrition and disc degeneration. Mature cells may have a decreased capacity to create or retain extracellular matrix components in response to mechanical loading compared to young cells. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 800,806, 2009 [source]


    Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats

    JOURNAL OF PINEAL RESEARCH, Issue 2 2004
    Veysel Tahan
    Abstract:, Increased deposition of the extracellular matrix components, particularly collagen, is a central phenomenon in liver fibrosis. Stellate cells, the central mediators in the pathogenesis of fibrosis are activated by free radicals, and synthesize collagen. Melatonin is a potent physiological scavenger of hydroxyl radicals. Melatonin has also been shown to be involved in the inhibitory regulation of collagen content in tissues. At present, no effective treatment of liver fibrosis is available for clinical use. We aimed to test the effects of melatonin on dimethylnitrosamine (DMN)-induced liver damage in rats. Wistar albino rats were injected with DMN intraperitoneally. Following a single dose of 40 mg/kg DMN, either saline (DMN) or 100 mg/kg daily melatonin was administered for 14 days. In other rats, physiologic saline or melatonin were injected for 14 days, following a single injection of saline as control. Hepatic fibrotic changes were evaluated biochemically by measuring tissue hydroxyproline levels and histopathogical examination. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) levels were evaluated in blood and tissue homogenates. DMN caused hepatic fibrotic changes, whereas melatonin suppressed these changes in five of 14 rats (P < 0.05). DMN administration resulted in increased hydroxyproline and MDA levels, and decreased GSH and SOD levels, whereas melatonin reversed these effects. When melatonin was administered alone, no significant changes in biochemical parameters were noted. In conclusion, the present study suggests that melatonin functions as a potent fibrosuppressant and antioxidant, and may be a therapeutic choice. [source]


    Signalling molecules and growth factors for tissue engineering of cartilage,what can we learn from the growth plate?,

    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 6 2009
    Christoph Brochhausen
    Abstract Modern tissue engineering concepts integrate cells, scaffolds, signalling molecules and growth factors. For the purposes of regenerative medicine, fetal development is of great interest because it is widely accepted that regeneration recapitulates in part developmental processes. In tissue engineering of cartilage the growth plate of the long bone represents an interesting, well-organized developmental structure with a spatial distribution of chondrocytes in different proliferation and differentiation stages, embedded in a scaffold of extracellular matrix components. The proliferation and differentiation of these chondrocytes is regulated by various hormonal and paracrine factors. Thus, members of the TGF, superfamily, the parathyroid hormone-related peptide,Indian hedgehog loop and a number of transcription factors, such as Sox and Runx, are involved in the regulation of chondrocyte proliferation and differentiation. Furthermore, adhesion molecules, homeobox genes, metalloproteinases and prostaglandins play a role in the complex regulation mechanisms. The present paper summarizes the morphological organization of the growth plate and provides a short but not exhaustive overview of the regulation of growth plate development, giving interesting insights for tissue engineering of cartilage. Copyright © 2009 John Wiley & Sons, Ltd. [source]