Matricellular Protein (matricellular + protein)

Distribution by Scientific Domains


Selected Abstracts


miR-29 suppression of osteonectin in osteoblasts: Regulation during differentiation and by canonical Wnt signaling

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2009
Kristina Kapinas
Abstract The matricellular protein osteonectin, secreted protein acidic and rich in cysteine (SPARC, BM-40), is the most abundant non-collagenous matrix protein in bone. Matricellular proteins play a fundamental role in the skeleton as regulators of bone remodeling. In the skeleton, osteonectin is essential for the maintenance of bone mass and for balancing bone formation and resorption in response to parathyroid hormone (PTH). It promotes osteoblast differentiation and cell survival. Mechanisms regulating the expression of osteonectin in the skeleton and in other tissues remain poorly understood. We found that the proximal region of the mouse osteonectin 3, untranslated region (UTR) contains a well-conserved, dominant regulatory motif that interacts with microRNAs (miRs)-29a and -29c. Transfection of osteoblastic cells with miR-29a inhibitors increased osteonectin protein levels, whereas transfection of miR-29a precursor RNA decreased osteonectin. miR-29a and -29c were increased during osteoblastic differentiation in vitro. The up-regulation of these miRNAs correlated with decreased osteonectin protein during the matrix maturation and mineralization phases of late differentiation. In contrast, osteonectin transcript levels remained relatively constant during this process, implying repression of translation. Treatment of osteoblasts with LiCl induced miR-29a and -29c expression and decreased osteonectin synthesis. When cells were treated with Dickkopf-1 (Dkk-1), miR-29a and -29c expression was repressed. These data suggest that canonical Wnt signaling, which is increased during osteoblastic differentiation, induces expression of miR-29. Osteonectin and miR-29 are co-expressed in extra-skeletal tissues, and the post-transcriptional mechanisms regulating osteonectin in osteoblasts are likely to be active in other cell systems. J. Cell. Biochem. 108: 216,224, 2009. © 2009 Wiley-Liss, Inc. [source]


Connective tissue growth factor and cardiac fibrosis

ACTA PHYSIOLOGICA, Issue 3 2009
A. Daniels
Abstract Cardiac fibrosis is a major pathogenic factor in a variety of cardiovascular diseases and refers to an excessive deposition of extracellular matrix components in the heart, which leads to cardiac dysfunction and eventually overt heart failure. Evidence is accumulating for a crucial role of connective tissue growth factor (CTGF) in fibrotic processes in several tissues including the heart. CTGF orchestrates the actions of important local factors evoking cardiac fibrosis. The central role of CTGF as a matricellular protein modulating the fibrotic process in cardiac remodelling makes it a possible biomarker for cardiac fibrosis and a potential candidate for therapeutic intervention to mitigate fibrosis in the heart. [source]


SPARC is expressed by macroglia and microglia in the developing and mature nervous system

DEVELOPMENTAL DYNAMICS, Issue 5 2008
Adele J. Vincent
Abstract SPARC (secreted protein, acidic and rich in cysteine) is a matricellular protein that is highly expressed during development, tissue remodeling, and repair. SPARC produced by olfactory ensheathing cells (OECs) can promote axon sprouting in vitro and in vivo. Here, we show that in the developing nervous system of the mouse, SPARC is expressed by radial glia, blood vessels, and other pial-derived structures during embryogenesis and postnatal development. The rostral migratory stream contains SPARC that becomes progressively restricted to the SVZ in adulthood. In the adult CNS, SPARC is enriched in specialized radial glial derivatives (Müller and Bergmann glia), microglia, and brainstem astrocytes. The peripheral glia, Schwann cells, and OECs express SPARC throughout development and in maturity, although it appears to be down-regulated with maturation. These data suggest that SPARC may be expressed by glia in a spatiotemporal manner consistent with a role in cell migration, neurogenesis, synaptic plasticity, and angiogenesis. Developmental Dynamics 237:1449-1462, 2008. © 2008 Wiley-Liss, Inc. [source]


Biological indicators of prognosis in Ewing's sarcoma: An emerging role for lectin galactoside-binding soluble 3 binding protein (LGALS3BP)

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2010
Diana Zambelli
Abstract Starting from an experimental model that accounts for the 2 most important adverse processes to successful therapy of Ewing's sarcoma (EWS), chemoresistance and the presence of metastasis at the time of diagnosis, we defined a molecular signature of potential prognostic value. Functional annotation of differentially regulated genes revealed 3 major networks related to cell cycle, cell-to-cell interactions and cellular development. The prognostic impact of 8 genes, representative of these 3 networks, was validated in 56 EWS patients. High mRNA expression levels of HINT1, IFITM2, LGALS3BP, STOML2 and c-MYC were associated with reduced risk to death and lower risk to develop metastasis. At multivariate analysis, LGALS3BP, a matricellular protein with a role in tumor progression and metastasis, was the most important predictor of event-free survival and overall survival. The association between LGALS3BP and prognosis was confirmed at protein level, when expression of the molecule was determined in tumor tissues but not in serum, indicating a role for the protein at local tumor microenvironment. Engineered enhancement of LGALS3BP expression in EWS cells resulted in inhibition of anchorage independent cell growth and reduction of cell migration and metastasis. Silencing of LGALS3BP expression reverted cell behavior with respect to in vitro parameters, thus providing further functional validation of genetic data obtained in clinical samples. Thus, we propose LGALS3BP as a novel reliable indicator of prognosis, and we offer genetic signatures to the scientific communities for cross-validation and meta-analysis, which are indispensable tools for a rare tumor such as EWS. [source]


Inhibition of connective tissue growth factor/CCN2 expression in human dermal fibroblasts by interleukin-1, and ,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2010
D. Nowinski
Abstract Connective tissue growth factor (CTGF/CCN2) is a matricellular protein induced by transforming growth factor (TGF)-, and intimately involved with tissue repair and overexpressed in various fibrotic conditions. We previously showed that keratinocytes in vitro downregulate TGF-,-induced expression of CTGF in fibroblasts by an interleukin (IL)-1 ,-dependent mechanism. Here, we investigated further the mechanisms of this downregulation by both IL-1, and ,. Human dermal fibroblasts and NIH 3T3 cells were treated with IL-1, or , in presence or absence of TGF-,1. IL-1 suppressed basal and TGF-,-induced CTGF mRNA and protein expression. IL-1, and , inhibited TGF-,-stimulated CTGF promoter activity, and the activity of a synthetic minimal promoter containing Smad 3-binding CAGA elements. Furthermore, IL-1, and , inhibited TGF-,-stimulated Smad 3 phosphorylation, possibly linked to an observed increase in Smad 7 mRNA expression. In addition, RNA interference suggested that TGF-, activated kinase1 (TAK1) is necessary for IL-1 inhibition of TGF-,-stimulated CTGF expression. These results add to the understanding of how the expression of CTGF in human dermal fibroblasts is regulated, which in turn may have implications for the pathogenesis of fibrotic conditions involving the skin. J. Cell. Biochem. 110: 1226,1233, 2010. Published 2010 Wiley-Liss, Inc. [source]


The matricellular protein SPARC is internalized in Sertoli, Leydig, and germ cells during testis differentiation

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 5 2006
Megan J. Wilson
Abstract The gene encoding the matricellular protein secreted protein, acidic and rich in cysteine (SPARC) was identified in a screen for genes expressed sex-specifically during mouse gonad development, as being strongly upregulated in the male gonad from very early in testis development. We present here a detailed analysis of SPARC gene and protein expression during testis development, from 11.5 to 15.5 days post coitum (dpc). Section in situ hybridization analysis revealed that SPARC mRNA is expressed by the Sertoli cells in the testis cords and the fetal Leydig cells, found within the interstitial space between the testis cords. Immunodetection with anti-SPARC antibody showed that the protein was located inside the testis cords, within the cytoplasm of Sertoli and germ cells. In the interstitium, SPARC was present intracellularly within the Leydig cells. The internalization of SPARC in Sertoli, Leydig, and germ cells suggests that it plays an intracellular regulatory role in these cell types during fetal testis development. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source]


Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis

ARTHRITIS & RHEUMATISM, Issue 5 2010
Sonali Sonnylal
Objective Connective tissue growth factor (CTGF) is a cysteine-rich secreted matricellular protein involved in wound healing and tissue repair. Enhanced and prolonged expression of CTGF has been associated with tissue fibrosis in humans. However, questions remain as to whether CTGF expression alone is sufficient to drive fibrosis. This study was undertaken to investigate whether CTGF alone is sufficient to cause fibrosis in intact animals and whether its effects are mediated through activation of transforming growth factor , (TGF,) signaling or through distinct signal transduction pathways. Methods We generated mice overexpressing CTGF in fibroblasts under the control of the fibroblast-specific collagen ,2(I) promoter enhancer. Tissues such as skin, lung, and kidney were harvested for histologic analysis. Mouse embryonic fibroblasts were prepared from embryos (14.5 days postcoitum) for biochemical analysis. Results Mice overexpressing CTGF in fibroblasts were susceptible to accelerated tissue fibrosis affecting the skin, lung, kidney, and vasculature, most notably the small arteries. We identified a marked expansion of the myofibroblast cell population in the dermis. RNA analysis of transgenic dermal fibroblasts revealed elevated expression of key matrix genes, consistent with a fibrogenic response. CTGF induced phosphorylation of p38, ERK-1/2, JNK, and Akt, but not Smad3, in transgenic mouse fibroblasts compared with wild-type mouse fibroblasts. Transfection experiments showed significantly increased basal activity of the CTGF and serum response element promoters, and enhanced induction of the CTGF promoter in the presence of TGF,. Conclusion These results demonstrate that selective expression of CTGF in fibroblasts alone causes tissue fibrosis in vivo through specific signaling pathways, integrating cues from the extracellular matrix into signal transduction pathways to orchestrate pivotal biologic responses relevant to tissue repair and fibrosis. [source]


Developmental expression of Smoc1 and Smoc2 suggests potential roles in fetal gonad and reproductive tract differentiation

DEVELOPMENTAL DYNAMICS, Issue 11 2009
Dorothy E. Pazin
Abstract SMOC1 and SMOC2 are matricellular proteins thought to influence growth factor signaling, migration, proliferation, and angiogenesis. We examined the expression and regulation of Smoc1 and Smoc2 in fetal gonad/mesonephros complexes to discover possible roles for these genes in gonad and mesonephros development. Smoc1 was upregulated at ,E10.75 in a center-to-poles wave in pre-Sertoli and pre-granulosa cells and its expression was greatly reduced in Wt1, Sf1, and Fog2 mutants. After E13.5, Smoc1 was downregulated in an anterior-to-posterior wave in granulosa cells but persisted in Sertoli cells, suggesting a sexually dimorphic requirement in supporting cell lineage differentiation. Smoc2 was expressed in Leydig cells, mesonephroi, and Wnt4 mutant ovaries, but not wildtype ovaries. Using organ culture, we determined that Smoc2 expression was dependent on Hedgehog signaling in testes, mesonephroi, and kidneys. Overall, these results demonstrate that SMOC1 and SMOC2 may mediate intercellular signaling and cell type,specific differentiation during gonad and reproductive tract development. Developmental Dynamics 238:2877,2890, 2009. © 2009 Wiley-Liss, Inc. [source]


Role of TNF alpha and PLF in bone remodeling in a rat model of repetitive reaching and grasping,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010
Shobha Rani
We have previously developed a voluntary rat model of highly repetitive reaching that provides an opportunity to study effects of non-weight bearing muscular loads on bone and mechanisms of naturally occurring inflammation on upper limb tissues in vivo. In this study, we investigated the relationship between inflammatory cytokines and matricellular proteins (Periostin-like-factor, PLF, and connective tissue growth factor, CTGF) using our model. We also examined the relationship between inflammatory cytokines, PLF and bone formation processes. Rats underwent initial training for 5 weeks, and then performed a high repetition high force (HRHF) task (12,reaches/min, 60% maximum grip force, 2,h/day, 3 days/week) for 6 weeks. We then examined the effect of training or task performance with or without treatment with a rat specific TNF, antibody on inflammatory cytokines, osteocalcin (a bone formation marker), PLF, CTGF, and behavioral indicators of pain or discomfort. The HRHF task decreased grip strength and induced forepaw mechanical hypersensitivity in both trained control and 6-week HRHF animals. Two weeks of anti-TNF, treatment improved grip strength in both groups, but did not ameliorate forepaw hypersensitivity. Moreover, anti-TNF, treatment attenuated task-induced increases in inflammatory cytokines (TNF,, IL-1,, and MIP2 in serum; TNF, in forelimb bone and muscles) and serum osteocalcin in 6-week HRHF animals. PLF levels in forelimb bones and flexor digitorum muscles increased significantly in 6-week HRHF animals, increases attenuated by anti-TNF, treatment. CTGF levels were unaffected by task performance or anti-TNF, treatment in 6-week HRHF muscles. In primary osteoblast cultures, TNF,, MIP2 and MIP3a treatment increased PLF levels in a dose dependent manner. Also in primary osteoblast cultures, increased PLF promoted proliferation and differentiation, the latter assessed by measuring Runx2, alkaline phosphatase (ALP) and osteocalcin mRNA levels; ALP activity; as well as calcium deposition and mineralization. Increased PLF also promoted cell adhesion in MC3T3-E1 osteoblast-like cell cultures. Thus, tissue loading in vivo resulted in increased TNF,, which increased PLF, which then induced anabolic bone formation, the latter results confirmed in vitro. J. Cell. Physiol. 225: 152,167, 2010. © 2010 Wiley-Liss, Inc. [source]