Home About us Contact | |||
Mating Structure (mating + structure)
Selected AbstractsMating structure and male production in Vespa analis and Vespa simillima (Hymenoptera: Vespidae)ENTOMOLOGICAL SCIENCE, Issue 3 2007Jun-ichi TAKAHASHI Abstract We estimated queen mating frequency, genetic relatedness between workers and worker reproduction in the hornets Vespa analis and Vespa simillima using microsatellite DNA genotyping. The 20 V. analis colonies studied each contained a queen inseminated by a single male. Of the 15 V. simillima colonies studied, nine had a queen inseminated by a single male, four had a queen inseminated by two males, and two had a queen inseminated by three males. The estimated effective number of matings was 1.33 ± 0.74 (mean ± SD), with 75,85% of the offspring of the six multiply mated queens sired by single males. The values for genetic relatedness between the workers of V. analis and V. simillima were 0.739 ± 0.004 and 0.698 ± 0.013 (mean ± SD), respectively. We conclude that V. analis and V. simillima colonies are genetically monogynous and monandrous. When high relatedness between the workers occurs within colonies, kin selection theory predicts a potential conflict between queens and workers over male production. To determine whether males were derived from queens or workers, males from V. analis and V. simillima colonies were genotyped at four microsatellite loci and the level of ovary activation in workers was determined. None of the 787 V. analis workers and only 15 of 3520 V. simillima workers had developed ovaries. Furthermore, the genotyping identified no worker-produced males in any colony. The presence of reproductive workers correlated positively with the number of workers within the colony. These results suggest that eusocial colonies with an annual life cycle tend to break down socially when they become large and are close to dying. [source] Polymorphic microsatellite DNA markers in the ant Formica exsectaMOLECULAR ECOLOGY RESOURCES, Issue 1 2002Niclas Gyllenstrand Abstract Highly polymorphic genetic markers provide a useful tool for estimating important genetic parameters in studies of the evolution of sociality in insects. Here we report 14 polymorphic microsatellite markers developed in the ant Formica exsecta. The number of alleles found ranged between 3 and 18 per locus. These markers were developed for studying genetic population structure and mating structure in F. exsecta populations with varying social organizations (monogyne and polygyne types of societies). Cross-species amplification indicated that some of the markers might be usable even in species belonging to different subfamilies. [source] Ultrastructure of the biflagellate gametes of Collinsiella cava (Ulvophyceae, Chlorophyta)PHYCOLOGICAL RESEARCH, Issue 2 2000Takeshi Nakayama SUMMARY The fine structure of the biflagellate gametes of Collinsiella cava (Yendo) Printz was investigated in detail to clarify the species's taxonomic and phylo-genetic position. Gametes are covered by small square scales with no distinct substructure. The chloroplast of the gamete includes an eyespot comprised of two layers of globules, and a pyrenoid that is traversed by one or a few thylakoids. Basal bodies overlap at their proximal ends and are offset in a counterclockwise orientation. Each basal body has a small bipartite terminal cap, a prominent proximal sheath comprised of two unequal subunits and a circular element situated at the cartwheel portion. A distal fibre, a connecting fibre and linkage between proximal sheaths connect the two basal bodies. Microtubular roots are comprised of two dexter (d) roots, subtended by the system I fibre, and two sinister (s) roots. Gametes have a single rhizoplast which extends parallel to one of the two d roots and extends to the mating structure. The ultrastructure of Collinsiella gametes is very similar to that of Mono-stroma and other members of the Ulotrichales, Ulvophyceae, and we concluded that the genus Collinsiella should be treated as a member of the Monostromat-aceae. The planozygote has four basal bodies, eight microtubular roots and two eyespots always situated at the same face of the cell. From observations of the planozygotes, the position of the mating structure relative to the flagellar apparatus is not consistent, but converse, between two mating types. A comparison of the location of the mating structure in Chlamydomonas and other green algae is presented. [source] Spanish colonial effects on Native American mating structure and genetic variability in northern and central Florida: Evidence from Apalachee and western TimucuaAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2005Christopher M. Stojanowski Abstract Standard population genetic analyses are implemented for a series of precontact and contact period samples from central and northern Florida to investigate changes in genetic variability and population affinity coincident with the establishment of Spanish missions during the 17th century. Estimates of FST based on odontometric data indicate limited heterogeneity for the Apalachee samples, suggestive of some degree of within-group endogamy for this ethnic group prior to contact. This corresponds well with ethnohistoric reconstructions indicating that Apalachee were populous, partially linguistically isolated from its neighbors, and involved in persistent cycles of warfare with neighboring groups. Estimates of extralocal gene flow for the Apalachee samples indicate limited initial changes in the mating structure of these populations. After 1650, however, extralocal gene flow increases, consistent with evidence for dramatic population movements throughout northern Florida and increased Spanish presence in the province, particularly at the mission of San Luis. Inclusion of non-Apalachee outgroups does not increase estimates of genetic heterogeneity, as was expected based on ethnohistoric data. The pattern of genetic distances suggests a biological division between north and south Florida population groups, consistent with archaeological and ethnohistoric data, and similarly indicates some distinction between precontact and postcontact local groups. Differential extralocal gene flow experienced by pre-1650 Apalachee and Timucua populations suggests localized mission experience. The Apalachee, with large, dense populations, experienced limited initial changes in genetic diversity or mating structure. However, after 1650 they were apparently involved in a much more expansive mating network that may have included Spaniards and immigrant Native American groups to the region. These results are in contrast to the mission experience of the Guale Indians of the Georgia coast. Am J Phys Anthropol, 2005. © 2005 Wiley-Liss, Inc. [source] |