Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Mating

  • assortative mating
  • extra-pair mating
  • female mating
  • female multiple mating
  • first mating
  • heterospecific mating
  • multiple mating
  • natural mating
  • nonrandom mating
  • positive assortative mating
  • random mating
  • successful mating

  • Terms modified by Mating

  • mating activity
  • mating attempt
  • mating behavior
  • mating behaviour
  • mating compatibility
  • mating competition
  • mating design
  • mating effort
  • mating experiment
  • mating frequency
  • mating groups
  • mating opportunity
  • mating pair
  • mating partner
  • mating pattern
  • mating period
  • mating pheromone
  • mating plug
  • mating preference
  • mating rate
  • mating season
  • mating signal
  • mating status
  • mating strategy
  • mating structure
  • mating success
  • mating system
  • mating system parameter
  • mating tactic
  • mating type
  • mating type locus

  • Selected Abstracts


    EVOLUTION, Issue 5 2010
    Sarah R. Pryke
    Assortative mating is a key aspect in the speciation process because it is important for both initial divergence and maintenance of distinct species. However, it remains a challenge to explain how assortative mating evolves when diverging populations are undergoing gene flow (e.g., during hybridization). Here I experimentally test how assortative mating is maintained with frequent gene flow between diverged head-color morphs of the Gouldian finch (Erythrura gouldiae). Contrary to the predominant view on the development of sexual preferences in birds, cross-fostered offspring did not imprint on the phenotype of their conspecific (red or black morphs) or heterospecific (Bengalese finch) foster parents. Instead, the mating preferences of F1 and F2 intermorph-hybrids are consistent with inheritance on the Z chromosomes, which are also the location for genes controlling color expression and the genes causing low fitness of intermorph-hybrids. Genetic associations between color signal and preference loci on the sex chromosomes may prevent recombination from breaking down these associations when the morphs interbreed, helping to maintain assortative mating in the face of gene flow. Although sex linkage of reproductively isolating traits is theoretically expected to promote speciation, social and ecological constraints may enforce frequent interbreeding between the morphs, thus preventing complete reproductive isolation. [source]


    EVOLUTION, Issue 12 2009
    Alan Brelsford
    Hybrid zones between recently diverged taxa are natural laboratories for speciation research, allowing us to determine whether there is reproductive isolation between divergent forms and the causes of that isolation. We present a study of a classic avian hybrid zone in North America between two subspecies of the yellow-rumped warbler (Dendroica coronata). Although previous work has shown very little differentiation in mitochondrial DNA across this hybrid zone, we identified two nuclear loci (one sex-linked and one autosomal) that show fixed differences across the hybrid zone, in a close concordance with patterns of plumage variation. Temporal stability and limited width of the hybrid zone, along with substantial linkage disequilibrium between these two diagnostic markers in the center of the zone, indicate that there is moderate reproductive isolation between these populations, with an estimated strength of selection maintaining the zone of 18%. Pairing data indicate that assortative mating is either very weak or absent, suggesting that this reproductive isolation is largely due to postmating barriers. Thus, despite extensive hybridization the two forms are distinct evolutionary groups carrying genes for divergent adaptive peaks, and this situation appears relatively stable. [source]


    EVOLUTION, Issue 7 2008
    Gabriela Gleiser
    In sexually polymorphic species, the morphs are maintained by frequency-dependent selection through disassortative mating. In heterodichogamous populations in which disassortative mating occurs between the protandrous and protogynous morphs, a decrease in female fitness in one morph is hypothesized to drive sexual specialization in the other morph, resulting in dimorphic populations. We test these ideas in a population of the heterodichogamous species, Acer opalus. We assessed both prospective gender of individuals in terms of their allocations and actual parentage using microsatellites; we found that most matings in A. opalus occur disassortatively. We demonstrate that the protogynous morph is maintained by frequency-dependent selection, but that maintenance of males versus protandrous individuals depends on their relative siring success, which changes yearly. Seeds produced later in the reproductive season were smaller than those produced earlier; this should compromise reproduction through ovules in protandrous individuals, rendering them male biased in gender. Time-dependent gender and paternity analyses indicate that the sexual morphs are specialized in their earlier sexual functions, mediated by the seasonal decrease in seed size. Our results confirm that mating patterns are context-dependent and change seasonally, suggesting that sexual specialization can be driven by seasonal effects on fitness gained through one of the two sexual functions. [source]


    EVOLUTION, Issue 9 2007
    Janette A. Steets
    Although a large portion of plant and animal species exhibit intermediate levels of outcrossing, the factors that maintain this wealth of variation are not well understood. Natural enemies are one relatively understudied ecological factor that may influence the evolutionary stability of mixed mating. In this paper, we aim for a conceptual unification of the role of enemies in mating system expression and evolution in both hermaphroditic animals and plants. We review current theory and detail the potential effects of enemies on fundamental mating system parameters. In doing so, we identify situations in which consideration of enemies alters expectations about the stability of mixed mating. Generally, we find that inclusion of the enemy dimension may broaden conditions in which mixed mating systems are evolutionarily stable. Finally, we highlight avenues ripe for future theoretical and empirical work that will advance our understanding of enemies in the expression and evolution of mixed mating in their hosts/victims, including examination of feedback cycles between victims and enemies and quantification of mating system-related parameters in victim populations in the presence and absence of enemies. [source]


    EVOLUTION, Issue 7 2006
    Alistair Blachford
    Abstract To understand selection on recombination, we need to consider how linkage disequilibria develop and how recombination alters these disequilibria. Any factors that development of disequilbria, including nonrandom mating, can potentially change selectio on recombination. Assortative mating is known to affect linkage disequilbria but its effect on the evolution of recombination have not been previously studied. Given that assortative arise indirectly via a number of biologically realistic scenarios, it is plausible that weak assortative mating occurs across a diverse set of taxa. Using a modifier model, we examine how assortative mating for fitness affects the evolution of recombination under two evolutionary scenarios: selective sweeps and mutation-selection balance. We find there is no net effect of assortative mating during a selective sweep. In contrast, assortative mating could have a large effect on recombination when deleterious alleles are maintained at mutation-selection balance but only if assortative mating is sufficiently strong. Upon considering reasonable values for the number of loci affecting fitness components, the strength of selection, and the mutation rate, we conclude that the correlation in fitness between mates is unlikely to be sufficiently high for assortative mating to affect the evolution of recombination in most species. [source]


    EVOLUTION, Issue 1 2000
    Maria R. Servedio
    Abstract., The occurrence of reinforcement is compared when premating isolation is caused by the spread of a gene causing females to prefer to mate with males carrying a population-specific trait (a "preference" model) and by a gene that causes females to prefer to mate with males that share their own trait phenotype (an "assortative mating" model). Both two-island models, which have symmetric gene flow, and continent-island models, which have one-way gene flow, are explored. Reinforcement is found to occur much more easily in a two-island assortative mating model than in any of the other three models. This is due primarily to the fact that in this model the assortative mating allele will automatically become genetically associated in each population with the trait allele that is favored by natural selection on that island. In contrast, natural selection on the trait both favors and opposes the evolution of premating isolation in the two-island preference model, depending on the particular population. These results imply that species recognition in the context of mating may evolve particularly easily when it targets cues that are favored by natural selection in each population. In the continent-island models, reinforcement is found to occur more often under the preference model than the assortative mating model, thus reversing the trend from the two-island models. Patterns of population subdivision may therefore play a role in determining what types of premating isolation may evolve. [source]


    Miguel González
    Summary This paper concerns the estimation of the offspring mean vector, the covariance matrix and the growth rate in the class of bisexual branching processes with population-size dependent mating. For the proposed estimators, some unconditional moments and some conditioned to non-extinction are determined and asymptotic properties are established. Confidence intervals are obtained and, as illustration, a simulation example is given. [source]


    EVOLUTION, Issue 1 2009
    Matthew D. Dean
    Barriers to gene flow can arise at any stage in the reproductive sequence. Most studies of reproductive isolation focus on premating or postzygotic phenotypes, leaving the importance of differences in fertilization rate overlooked. Two closely related species of house mice, Mus domesticus and M. musculus, form a narrow hybrid zone in Europe, suggesting that one or more isolating factors operate in the face of ongoing gene flow. Here, we test for differences in fertilization rate using laboratory matings as well as in vitro sperm competition assays. In noncompetitive matings, we show that fertilization occurs significantly faster in conspecific versus heterospecific matings and that this difference arises after mating and before zygotes form. To further explore the mechanisms underlying this conspecific advantage, we used competitive in vitro assays to isolate gamete interactions. Surprisingly, we discovered that M. musculus sperm consistently outcompeted M. domesticus sperm regardless of which species donated ova. These results suggest that in vivo fertilization rate is mediated by interactions between sperm, the internal female environment, and/or contributions from male seminal fluid. We discuss the implications of faster conspecific fertilization in terms of reproductive isolation among these two naturally hybridizing species. [source]

    Temporal Shifts in Conspicuousness: Mate Attraction Displays of the Texas Field Cricket, Gryllus texensis

    ETHOLOGY, Issue 12 2004
    Susan M. Bertram
    Conspicuous mate attraction displays can simultaneously draw the attention of potential mates and predators, placing the signaller in peril of becoming prey. The balance between these countervailing forms of selection has the potential to shape mate attraction displays. Male Texas field crickets (Gryllus texensis; Orthoptera) signal acoustically to attract mates. Mating signals also attract acoustically orienting parasitoid flies (Ormia ochracea; Tachinidae). Both the abundance of female crickets and parasitoid flies fluctuates throughout the night. We show mate attraction displays exhibit diel shifts that correlate positively with expected female cricket presence and negatively with expected parasitoid fly activity. During early evening, when parasitoids are most common and mating is scarce, crickets signal less often and with reduced conspicuousness. During the second half of the evening, when sexually receptive females are abundant and parasitoids are scarce, crickets signal more often and with enhanced conspicuousness. These diel shifts in mate attraction displays do not appear to result from male crickets detecting parasitoid flies or female crickets and altering their behaviour accordingly. Males in close proximity to parasitoid flies or female crickets do not signal differently than lone males. Instead, diel pattern shifts in mate attraction displays appear to be a selective response to trade-offs between natural selection via parasitism and sexual selection via mate choice. [source]

    Dominance Interactions Regulate Worker Mating in the Polygynous Ponerine Ant Gnamptogenys menadensis

    ETHOLOGY, Issue 6 2001
    Bruno Gobin
    In queenless ants, workers compete aggressively to be reproductives instead of sterile helpers. To limit the number of reproductives, either mating or egg-laying by mated workers can be regulated. In Gnamptogenys menadensis, all mated workers reproduce, and field data presented here indicate that mating is not random. We removed gamergates experimentally (n=16 groups) to induce mating and gamergate replacement. Virgin workers engaged in agonistic interactions, allowing us to classify them into two groups: dominants performed antennal boxing and biting, while subordinates did not. However, a few subordinates cooperated to immobilize individual dominant workers. This effectively reduced the number of dominants because immobilized dominants became subordinates. Six to 12 wks after the removal of reproductives, between one and eight dominants per colony started to perform ,sexual calling' outside the nest entrance. Sixteen (out of 33) dominants mated with foreign males introduced in five experimental groups. None of the subordinate workers mated. The probability of mating is thus regulated by dominance interactions among workers and immobilizations initiated by infertile workers in this polygynous queenless ant. [source]

    The sex-peptide DUP99B is expressed in the male ejaculatory duct and in the cardia of both sexes

    FEBS JOURNAL, Issue 21 2003
    Albana Rexhepaj
    Mating elicits two postmating responses in many insect females: the egg laying rate increases and sexual receptivity is reduced. In Drosophila melanogaster, two peptides of the male genital tract, sex-peptide and DUP99B, elicit these postmating responses when injected into virgin females. Here we show that the gene encoding DUP99B is expressed in the male ejaculatory duct and in the cardia of both sexes. The DUP99B that is synthesized in the ejaculatory duct is transferred, during mating, into the female genital tract. Expression of the gene is first seen in a late pupal stage. Males containing an intact ejaculatory duct, but lacking accessory glands, initiate the two postmating responses in their female partners [Xue, L. & Noll, M. (2000) Proc. Natl Acad. Sci. USA97, 3272,3275]. Although such males synthesize DUP99B in wild-type quantities, they elicit only weak postmating responses in their mating partners. Males lacking the Dup99B gene elicit the two postmating responses to the same extent as wild-type males. These results suggest that both sex-peptide and DUP99B can elicit both responses in vivo. However, sex-peptide seems to play the major role in eliciting the postmating responses, while DUP99B may have specialized for other, as yet unknown, functions. [source]

    Molecular epidemiology of clinical and environmental isolates of the Cryptococcus neoformans species complex reveals a high genetic diversity and the presence of the molecular type VGII mating type a in Colombia

    FEMS YEAST RESEARCH, Issue 4 2006
    Patricia Escandón
    Abstract The aim of this study was to investigate the epidemiological relationships of clinical and environmental isolates of the Cryptococcus neoformans species complex in Colombia. The current study reflects data from 1987 to 2004. In Colombia serotypes A and B are most frequently recovered from patients and the environment. Of the 178 clinical isolates studied, 91.1% were of serotype A, 8.4% serotype B and 0.5% serotype C. Of the 247 environmental isolates, 44.2% were of serotype A, 42.6% serotype B and 13.2% serotype C. No serotype D isolates were isolated. Serotype AD has not been recovered in Colombia. PCR fingerprinting with the primers M13, (GACA)4 and (GTG)5 and URA5 gene restriction fragment length polymorphism analysis grouped the majority of clinical serotype A and environmental serotype B isolates into the molecular types VNI (98.1%) and VGII (100%), respectively. Mating type , was determined in 99.3% of serotype A isolates, but 96.6% of serotype B isolates were of mating type a. Similar profiles between clinical and environmental isolates suggest that the patients may have acquired the infection from the environment. The data presented form part of the Colombian contribution to the ongoing global survey of the C. neoformans species complex. [source]

    The effects of mating and instrumental insemination on queen honey bee flight behaviour and gene expression

    S. D. Kocher
    Abstract Mating is fundamental to most organisms, although the physiological and transcriptional changes associated with this process have been largely characterized only in Drosophila melanogaster. In this study, we use honey bees as a model system because their queens undergo massive and permanent physiological and behavioural changes following mating. Previous studies have identified changes associated with the transition from a virgin queen to a fully mated, egg-laying queen. Here, we further uncouple the mating process to examine the effects of natural mating vs. instrumental insemination and saline vs. semen insemination. We observed effects on flight behaviour, vitellogenin expression and significant overlap in transcriptional profiles between our study and analogous studies in D. melanogaster, suggesting that some post-mating mechanisms are conserved across insect orders. [source]

    Effects of intensive harvesting on moose reproduction

    Catherine Laurian
    Summary 1.,It has been hypothesized that a balanced adult sex ratio is necessary for the full participation of ungulate females in reproduction and therefore high productivity. We tested this general hypothesis by combining two complementary approaches. 2.,First, using telemetry (n = 60) and annual aerial censuses between 1995 and 1998, we compared two moose Alces alces populations in Quebec, Canada, one non-harvested and the other subject to intensive sport harvesting from the end of September to mid-October. We tested the following predictions for the harvested population: (i) females increase movements and home ranges during the mating period; (ii) the mating system is modified, with the appearance of groups of one male and many females; (iii) subadult males participate in reproduction; (iv) the mating period extends over two to three oestrus cycles; (v) the calving period extends over several months; and (vi) productivity declines. 3.,Daily movements and home range sizes during the mating period did not differ between harvested and non-harvested populations. Most groups observed were male,female pairs. Subadult males (1·5,2·5 years old) were only observed with females in the harvested population. Mating and calving periods did not differ between populations. The proportion of females that gave birth and the number of calves produced were also comparable in the two populations. 4.,Secondly, we also assessed the existence of a relationship between population productivity and percentage of males in various management units of the province of Quebec that were characterized by a wide range in sex ratios. Contrary to prediction (vi), the number of calves per 100 adult females was not related to the percentage of adult males in the population. 5.,The participation of young adult males (subadults) in reproduction in our harvested population may have compensated for the lower percentage of adult males, and thus productivity was unaffected. We therefore reject the hypothesis that intensive harvesting, at least at the level we observed, affects reproduction and population productivity. 6.,As there are some uncertainties regarding the long-term effects of high hunting pressure, however, managers should favour sex ratios close to levels observed in non-harvested populations. [source]

    Calling behaviour of adult female Helicoverpa armigera (Hübner) (Lep., Noctuidae) of overwintering generation and effects of mating

    M. L. Hou
    The calling behaviour of overwintering generation females of Helicoverpa armigera and the effects of mating were studied in the laboratory at 24 ± 1°C and under reversed light-dark cycle (16 h light : 8 h dark). Age had a significant influence on calling patterns. Based on calling age, mean number of calling bouts and total calling length of virgin females increased significantly, and mean onset time of calling advanced significantly from calling day 1 to subsequent calling days. Females of the overwintering generation exhibited more short bouts in calling, and some females that initiated calling on a previous day did not call on subsequent days. Mating had no effect on the overall patterns, but did affect calling behaviour. Mated females did not resume calling after mating during the same scotophase and, on the day following mating, mated females called less frequently and for a shorter duration, but thereafter increased to the same level of virgin females of the same calling age. Furthermore, as the moth aged, the percentage of mated females calling was lower than that of virgin females. [source]

    Inbreeding and inbreeding depression in a threatened endemic plant, the African violet (Saintpaulia ionantha ssp. grotei), of the East Usambara Mountains, Tanzania

    Johanna Kolehmainen
    Abstract Mating among closely-related individuals in small and isolated plant populations may result in reduced vigour of the inbred offspring, i.e. inbreeding depression, especially in naturally outbreeding plants. Occurrence of inbreeding and inbreeding depression was studied in Saintpaulia ionantha ssp. grotei, a threatened endemic plant species with a narrow ecological amplitude from the East Usambara Mountains. The level of inbreeding (measured as the fixation index, F) was investigated in twelve populations by analyzing variation at one microsatellite marker locus. The effect of one generation of selfing and outcrossing on the progeny fitness was studied by controlled crosses in two small patches that differ in the level isolation. The fixation index (F) across the populations was on the average 0.21 and varied among the populations from substantial inbreeding (F = 0.58) to surplus heterozygosity (F = ,0.29). High inbreeding depression (,) was observed at early and late stages of the life-cycle. The isolated patch exhibited lower inbreeding depression than did the non-isolated patch. The results of this study suggest that inbreeding and subsequent inbreeding depression are potential threats to the survival of Saintpaulia populations. Résumé L'accouplement d'individus étroitement liés, dans des petites populations végétales isolées, peut aboutir à une vigueur moindre de la progéniture de même souche, c'est-à-dire une dépression due à l'endogamie, spécialement chez des plantes qui sont naturellement exogames. L'occurrence de l'endogamie et de la dépression qui y est liée a étéétudiée chez le Saintpaulia ionantha spp. grotei, une plante endémique menacée qui n'a qu'une faible amplitude écologique dans l'est des Usambara Mountains. On a recherché le taux d'endogamie (mesuré par l'indice de fixation F) dans 12 populations en analysant la variation d'un locus microsatellite marqueur. L'effet d'une génération d'auto- et d'allofécondation sur l'aptitude (fitness) de la progéniture a étéétudié par des croisements contrôlés dans deux petites parcelles dont le degré d'isolement différait. L'indice de fixation F dans les populations était en moyenne de 0,21 et il variait d'une autofécondation substantielle (F = 0,58) à une hétérozygosité en surplus (F = ,0,29). Une forte dépression due à l'endogamie (,) a été observée aux stades précoce et tardif du cycle vital. La parcelle isolée a présenté une dépression liée à l'endogamie moins forte que celle de la parcelle non isolée. Les résultats de cette étude suggèrent que l'auto-fécondation et la dépression qui en résulte sont des menaces potentielles pour la survie des populations de Saintpaulia. [source]

    Mating triggers dynamic immune regulations in wood ant queens

    Abstract Mating can affect female immunity in multiple ways. On the one hand, the immune system may be activated by pathogens transmitted during mating, sperm and seminal proteins, or wounds inflicted by males. On the other hand, immune defences may also be down-regulated to reallocate resources to reproduction. Ants are interesting models to study post-mating immune regulation because queens mate early in life, store sperm for many years, and use it until their death many years later, while males typically die after mating. This long-term commitment between queens and their mates limits the opportunity for sexual conflict but raises the new constraint of long-term sperm survival. In this study, we examine experimentally the effect of mating on immunity in wood ant queens. Specifically, we compared the phenoloxidase and antibacterial activities of mated and virgin Formica paralugubris queens. Queens had reduced levels of active phenoloxidase after mating, but elevated antibacterial activity 7 days after mating. These results indicate that the process of mating, dealation and ovary activation triggers dynamic patterns of immune regulation in ant queens that probably reflect functional responses to mating and pathogen exposure that are independent of sexual conflict. [source]

    Sexual development and reproductive seasonality of hogfish (Labridae: Lachnolaimus maximus), an hermaphroditic reef fish

    R. S. McBride
    The seasonality, size, age, colour phases and sexual dimorphism of 13 reproductive classes of hogfish Lachnolaimus maximus are described. Analysis of histological sections of gonads (n = 1662) confirmed earlier conclusions that L. maximus is a monandric, protogynous hermaphrodite. Sex change was initiated at the end of the spawning season and over a broad range of sizes and ages. It occurred after a functional female phase (postmaturation) and proceeded more slowly (months) than previously believed. Eventually all individuals changed sex to a terminal male phase. Females were batch spawners, spawning as often as every day during winter and spring. There was no evidence of precocious sperm crypts in active females, sperm competition or other alternative male sexual strategies. Mating has been reported elsewhere to be haremic. The sexual development of L. maximus appears to be adaptive in terms of Ghiselin's size-advantage model, which links monandric protogyny and polygyny. The slow rate of sex change, however, poses problems when fishing pressure is high because harvest of a single male has the potential to reduce the reproductive output of an entire harem. [source]

    Mating of Xenos vesparum (Rossi) (Strepsiptera, Insecta) revisited

    L. Beani
    Abstract The controversial mating of the strepsipteran Xenos vesparum was studied to investigate the possible sperm routes for fertilization. The female, which is a neotenic permanent endoparasite of Polistes wasps, extrudes only its anterior region, the "cephalothorax," from the host abdomen. This region has an opening where both mating and larval escape occur. Observations with scanning and transmission electron microscopy revealed spermatozoa not only in the hemocoel, but also in the "ventral canal" (an extragenital duct peculiar to strepsipteran females) and in the "genital ducts" (ectodermal invaginations connecting the ventral canal to the hemocoel) of recently mated females. Xenos vesparum spermatozoa can reach the oocytes either through the hemocoel as a result of a hypodermic insemination, or by moving along the extragenital ducts, which are later used by first instar larvae to escape. The hypothesis of hypodermic insemination is reconsidered in the light of behavioral and ultrastructural evidence. J. Morphol. © 2005 Wiley-Liss, Inc. [source]

    Noradrenergic Nuclei that Receive Sensory Input During Mating and Project to the Ventromedial Hypothalamus Play a Role in Mating-Induced Pseudopregnancy in the Female Rat

    L. E. Northrop
    In female rats, vaginal-cervical stimulation (VCS) received during mating induces bicircadian prolactin surges that are required for the maintenance of pregnancy or pseudopregnancy (PSP). The neural circuits that transmit VCS inputs to the brain have not been fully described, although mating stimulation is known to activate medullary noradrenergic cell groups that project to the forebrain. In response to VCS, these neurones release noradrenaline within the ventrolateral division of the ventromedial hypothalamus (VMHvl) and the posterodorsal medial amygdala (MePD), two forebrain sites that are implicated in the initiation of PSP. Noradrenaline receptor activation within the VMHvl is both necessary and sufficient for PSP induction, suggesting that noradrenaline acting within the VMHvl is particularly important in mediating the effects of VCS towards the establishment of PSP. We therefore investigated whether or not endogenous, VCS-induced noradrenaline release within the VMHvl is involved in PSP induction in the rat. Before the receipt of sufficient mating stimulation to induce PSP, a retrograde neurotoxin, dopamine-,-hydroxylase-saporin (DBH-SAP), was infused bilaterally into the either the VMHvl or the MePD to selectively destroy afferent noradrenergic nuclei in the brainstem. DBH-SAP infusions into the VMHvl lesioned mating-responsive noradrenergic neurones in A1 and A2 medullary nuclei and reduced the incidence of PSP by 50%. Infusions of DBH-SAP into the MePD had no effect on the subsequent induction of PSP. These results suggest that VCS is conveyed to mating-responsive forebrain areas by brainstem noradrenergic neurones, and that the activity of noradrenergic cells projecting to the VMHvl is involved in the induction of PSP. [source]

    In Three Brain Regions Central to Maternal Behaviour, Neither Male Nor Female Phodopus Dwarf Hamsters Show Changes in Oestrogen Receptor Alpha Distribution with Mating or Parenthood

    M. E. Timonin
    Oestrogen receptor (ER), immunoreactivity in three brain regions relevant to maternal behaviour (medial preoptic area, bed nucleus of the stria terminalis and medial amygdala) was measured in two species of dwarf hamster that both mate during a postpartum oestrous but differ in expression of paternal behaviour. Male and female Phodopus campbelli and Phodopus sungorus were sampled as sexually naïve adults, following mating to satiety, and as new parents. In all brain regions, females expressed higher levels of ER, than males. Species did not have an effect on ER, distribution except in the medial amygdala, where P. sungorus females had higher expression levels than all other groups. Behavioural status was not associated with altered ER, expression. These results were not expected for females and suggest that a primary activational role for oestrogen, acting through ER, in these regions, does not generalise to maternal behaviour in Phodopus. In males, these results are consistent with previous manipulations of the ER, ligand, oestrogen, and suggest that paternal behaviour in P. campbelli is likely to be regulated by developmental effects of oestrogen on the brain during early life (similar to Microtus ochrogaster), rather than through activation by oestrogen at the time of fatherhood (similar to Peromyscus californicus). [source]

    Spousal Concordance for Alcohol Dependence: Evidence for Assortative Mating or Spousal Interaction Effects?

    ALCOHOLISM, Issue 5 2007
    Julia D. Grant
    Background: Alcohol dependence (AD) is among the most common psychiatric disorders, and impacts the health and well-being of problem drinkers, their family members, and society as a whole. Although previous research has consistently indicated that genetic factors contribute to variance in risk for AD, little attention has been paid to nonrandom mating for AD. When assortative mating occurs for a heritable trait, spouses are genetically correlated and offspring are at increased risk of receiving high-risk genes from both parents. The primary goal of the present analyses is to test hypotheses about the source(s) and magnitude of spousal associations for AD using a twin-spouse design. Methods: DSM-IV AD (without the clustering criterion) was assessed via telephone interview for 5,974 twin members of an older cohort of the Australian Twin Register (born 1902,1964) and 3,814 spouses of the twins. Quantitative genetic modeling was used to determine the extent to which variability in risk for AD was influenced by genetic factors, the extent of spousal association for AD, and whether the association was attributable to assortative mating, reciprocal spousal interaction, or both processes. Results: Genetic factors explained 49% of the variance in risk for AD. There was no evidence of gender differences in the spousal interaction effect, the degree of rater bias, or the association between the twin's report of spouse AD and the spouse's AD phenotype. Either the assortative mating parameter or the spousal interaction parameter could be removed from the model without a significant decrement in fit, but both could not be dropped simultaneously, suggesting a lack of power to differentiate between these 2 causes of spousal correlation. When both effects were included in the model, the spousal correlation was 0.29, the assortative mating coefficient was 0.45 (i.e., "like marries like"), and the reciprocal spousal interaction coefficient was ,0.10 (i.e., after controlling for assortative mating, the additional impact of spousal interactions is slightly protective). Conclusions: These analyses provide evidence of significant spousal associations for AD, with assortative mating increasing spouse similarity and spousal interaction effects decreasing it after controlling for assortative mating. Although the genetic impact is modest, assortative mating results in an increased proportion of offspring exposed to 2 alcoholic parents and the associated detrimental environmental sequelae, and increases the likelihood of offspring inheriting high-risk genes from both parents. [source]

    Life history of amphibians in the seasonal tropics: habitat, community and population ecology of a caecilian (genus Ichthyophis)

    JOURNAL OF ZOOLOGY, Issue 3 2005
    Alexander Kupfer
    Abstract Fundamental information on the ecology of the limbless tropical caecilians is needed for a well-founded conservation assessment. Here, essential life-history characters are presented for the oviparous caecilian Ichthyophis cf. kohtaoensis from a field site in South-east Asia (Mekong valley, north-eastern Thailand). Ichthyophis cf. kohtaoensis was found in a range of terrestrial macrohabitats including open scrubs, gallery forests and open secondary dipterocarp forests. In the dry season, caecilians were found mainly in soil but in the rainy season they were also detected in epigeic microhabitats (leaf litter or rotten vegetation). Ichthyophis cf. kohtaoensis were recorded in low densities (median 0.08 individuals/m2) and they share their habitat with a range of other terrestrial amphibians and reptiles. The population structure of I. cf. kohtaoensis varied seasonally. Records of late metamorphs were restricted to the cold dry season and occasionally to the onset of the rainy season. Females with clutches were only found in the rainy season. A life-history scenario of I. cf. kohtaoensis in north-eastern Thailand was set up. Reproduction and larval development is related to the rainy season. Mating and oviposition may start at the onset of the monsoon. Larvae hatch at the peak until the end of the rainy season and metamorphose until the end of the dry season. In the light of amphibian decline, this study may encourage further baseline work on the ecology of other caecilian species. [source]

    Seasonal and spatial dynamics of ectoparasite infestation of a threatened reptile, the tuatara (Sphenodon punctatus)

    Abstract The conservation of threatened vertebrate species and their threatened parasites requires an understanding of the factors influencing their distribution and dynamics. This is particularly important for species maintained in conservation reserves at high densities, where increased contact among hosts could lead to increased rates of parasitism. The tuatara (Sphenodon punctatus) (Reptilia: Sphenodontia) is a threatened reptile that persists at high densities in forests (, 2700 tuatara/ha) and lower densities in pastures and shrubland (< 200 tuatara/ha) on Stephens Island, New Zealand. We investigated the lifecycles and seasonal dynamics of infestation of two ectoparasites (the tuatara tick, Amblyomma sphenodonti, and trombiculid mites, Neotrombicula sp.) in a mark-recapture study in three forest study plots from November 2004 to March 2007, and compared infestation levels among habitat types in March 2006. Tick loads were lowest over summer and peaked from late autumn (May) until early spring (September). Mating and engorgement of female ticks was highest over spring, and larval tick loads subsequently increased in early autumn (March). Nymphal tick loads increased in September, and adult tick loads increased in May. Our findings suggest the tuatara tick has a 2- or 3-year lifecycle. Mite loads were highest over summer and autumn, and peaked in March. Prevalences (proportion of hosts infected) and densities (estimated number of parasites per hectare) of ticks were similar among habitats, but tick loads (parasites per host) were higher in pastures than in forests and shrub. The prevalence and density of mites was higher in forests than in pasture or shrub, but mite loads were similar among habitats. We suggest that a higher density of tuatara in forests may reduce the ectoparasite loads of individuals through a dilution effect. Understanding host,parasite dynamics will help in the conservation management of both the host and its parasites. [source]

    The biosynthesis of Juvenile Hormone, its degradation and titres in females of the true armyworm: a comparison of migratory and non-migratory populations

    Jeremy N. McNeil
    Summary In a previous study [McNeil et al. (1996) Archives of Insect Biochemistry and Physiology, 32, 575,584], patterns of sexual maturation and Juvenile Hormone (JH) biosynthesis were compared in virgin females from migratory (North American) and non-migratory (Azorean) populations of the true armyworm moth, Pseudaletia unipuncta Haworth (Lepidoptera: Noctuidae). Sexual maturation occurred at a significantly earlier age after emergence in the non-migrant population, and the rates of biosynthesis of JH in vitro suggested that lower titres of JH may be required to initiate the onset of calling behaviour (pheromone emission) and ovarian development in Azorean females. To examine the physiological differences in the reproductive biology of migratory and non-migratory populations in greater detail, the haemolymph titres of JH and JH esterase activity were compared in virgin females as a function of age. In addition, the effects of mating on JH biosynthesis in vitro, JH titres, JH esterase activity and egg production were measured in the two populations. As expected, JH titres rose more rapidly after emergence in Azorean females than in their North American counterparts but, contrary to our prediction, the maximum levels were also higher in the non-migrant population. Activity of JH esterase was much higher in Azorean females on the day of emergence. However, by the second day both populations had similar activity levels (about 17 nmol JH/min/ml) and exhibited a similar age-related decline in subsequent days. Mating did not affect the rate of JH biosynthesis in vitro but resulted in a significant increase in the titres of JH in the haemolymph of both populations. The maximum titre (a five-fold increase) occurred within 24 h of mating in Azorean females. In North American individuals the increase was greater (seven-fold) but did not occur until 48 h after mating. No difference in the activity of JH esterase was observed between mated and virgin North American females. By contrast, while there was an age-related decline in the activity of JH esterase in mated Azorean females, as seen in both North American groups, activity levels in virgin females remained constant with age. In all females, mating resulted in a significant increase in egg production within 24 h. The Azores is a volcanic archipelago, so these non-migratory populations were probably founded by immigrants originating from migratory continental populations. It is clear from our results that the change from a life history that includes migration to a non-migratory one involved more than just a temporal shift in the timing of the production of JH. Furthermore, the interpopulation differences in titres of JH and mating-induced changes reported here cannot be fully explained by the observed differences in the patterns of activity of JH esterase and JH biosynthesis in vitro. [source]

    European Mathematical Genetics Meeting, Heidelberg, Germany, 12th,13th April 2007

    Article first published online: 28 MAY 200
    Saurabh Ghosh 11 Indian Statistical Institute, Kolkata, India High correlations between two quantitative traits may be either due to common genetic factors or common environmental factors or a combination of both. In this study, we develop statistical methods to extract the contribution of a common QTL to the total correlation between the components of a bivariate phenotype. Using data on bivariate phenotypes and marker genotypes for sib-pairs, we propose a test for linkage between a common QTL and a marker locus based on the conditional cross-sib trait correlations (trait 1 of sib 1 , trait 2 of sib 2 and conversely) given the identity-by-descent sharing at the marker locus. The null hypothesis cannot be rejected unless there exists a common QTL. We use Monte-Carlo simulations to evaluate the performance of the proposed test under different trait parameters and quantitative trait distributions. An application of the method is illustrated using data on two alcohol-related phenotypes from the Collaborative Study On The Genetics Of Alcoholism project. Rémi Kazma 1 , Catherine Bonaïti-Pellié 1 , Emmanuelle Génin 12 INSERM UMR-S535 and Université Paris Sud, Villejuif, 94817, France Keywords: Gene-environment interaction, sibling recurrence risk, exposure correlation Gene-environment interactions may play important roles in complex disease susceptibility but their detection is often difficult. Here we show how gene-environment interactions can be detected by investigating the degree of familial aggregation according to the exposure of the probands. In case of gene-environment interaction, the distribution of genotypes of affected individuals, and consequently the risk in relatives, depends on their exposure. We developed a test comparing the risks in sibs according to the proband exposure. To evaluate the properties of this new test, we derived the formulas for calculating the expected risks in sibs according to the exposure of probands for various values of exposure frequency, relative risk due to exposure alone, frequencies of latent susceptibility genotypes, genetic relative risks and interaction coefficients. We find that the ratio of risks when the proband is exposed and not exposed is a good indicator of the interaction effect. We evaluate the power of the test for various sample sizes of affected individuals. We conclude that this test is valuable for diseases with moderate familial aggregation, only when the role of the exposure has been clearly evidenced. Since a correlation for exposure among sibs might lead to a difference in risks among sibs in the different proband exposure strata, we also add an exposure correlation coefficient in the model. Interestingly, we find that when this correlation is correctly accounted for, the power of the test is not decreased and might even be significantly increased. Andrea Callegaro 1 , Hans J.C. Van Houwelingen 1 , Jeanine Houwing-Duistermaat 13 Dept. of Medical Statistics and Bioinformatics, Leiden University Medical Center, The Netherlands Keywords: Survival analysis, age at onset, score test, linkage analysis Non parametric linkage (NPL) analysis compares the identical by descent (IBD) sharing in sibling pairs to the expected IBD sharing under the hypothesis of no linkage. Often information is available on the marginal cumulative hazards (for example breast cancer incidence curves). Our aim is to extend the NPL methods by taking into account the age at onset of selected sibling pairs using these known marginal hazards. Li and Zhong (2002) proposed a (retrospective) likelihood ratio test based on an additive frailty model for genetic linkage analysis. From their model we derive a score statistic for selected samples which turns out to be a weighed NPL method. The weights depend on the marginal cumulative hazards and on the frailty parameter. A second approach is based on a simple gamma shared frailty model. Here, we simply test whether the score function of the frailty parameter depends on the excess IBD. We compare the performance of these methods using simulated data. Céline Bellenguez 1 , Carole Ober 2 , Catherine Bourgain 14 INSERM U535 and University Paris Sud, Villejuif, France 5 Department of Human Genetics, The University of Chicago, USA Keywords: Linkage analysis, linkage disequilibrium, high density SNP data Compared with microsatellite markers, high density SNP maps should be more informative for linkage analyses. However, because they are much closer, SNPs present important linkage disequilibrium (LD), which biases classical nonparametric multipoint analyses. This problem is even stronger in population isolates where LD extends over larger regions with a more stochastic pattern. We investigate the issue of linkage analysis with a 500K SNP map in a large and inbred 1840-member Hutterite pedigree, phenotyped for asthma. Using an efficient pedigree breaking strategy, we first identified linked regions with a 5cM microsatellite map, on which we focused to evaluate the SNP map. The only method that models LD in the NPL analysis is limited in both the pedigree size and the number of markers (Abecasis and Wigginton, 2005) and therefore could not be used. Instead, we studied methods that identify sets of SNPs with maximum linkage information content in our pedigree and no LD-driven bias. Both algorithms that directly remove pairs of SNPs in high LD and clustering methods were evaluated. Null simulations were performed to control that Zlr calculated with the SNP sets were not falsely inflated. Preliminary results suggest that although LD is strong in such populations, linkage information content slightly better than that of microsatellite maps can be extracted from dense SNP maps, provided that a careful marker selection is conducted. In particular, we show that the specific LD pattern requires considering LD between a wide range of marker pairs rather than only in predefined blocks. Peter Van Loo 1,2,3 , Stein Aerts 1,2 , Diether Lambrechts 4,5 , Bernard Thienpont 2 , Sunit Maity 4,5 , Bert Coessens 3 , Frederik De Smet 4,5 , Leon-Charles Tranchevent 3 , Bart De Moor 2 , Koen Devriendt 3 , Peter Marynen 1,2 , Bassem Hassan 1,2 , Peter Carmeliet 4,5 , Yves Moreau 36 Department of Molecular and Developmental Genetics, VIB, Belgium 7 Department of Human Genetics, University of Leuven, Belgium 8 Bioinformatics group, Department of Electrical Engineering, University of Leuven, Belgium 9 Department of Transgene Technology and Gene Therapy, VIB, Belgium 10 Center for Transgene Technology and Gene Therapy, University of Leuven, Belgium Keywords: Bioinformatics, gene prioritization, data fusion The identification of genes involved in health and disease remains a formidable challenge. Here, we describe a novel bioinformatics method to prioritize candidate genes underlying pathways or diseases, based on their similarity to genes known to be involved in these processes. It is freely accessible as an interactive software tool, ENDEAVOUR, at Unlike previous methods, ENDEAVOUR generates distinct prioritizations from multiple heterogeneous data sources, which are then integrated, or fused, into one global ranking using order statistics. ENDEAVOUR prioritizes candidate genes in a three-step process. First, information about a disease or pathway is gathered from a set of known "training" genes by consulting multiple data sources. Next, the candidate genes are ranked based on similarity with the training properties obtained in the first step, resulting in one prioritized list for each data source. Finally, ENDEAVOUR fuses each of these rankings into a single global ranking, providing an overall prioritization of the candidate genes. Validation of ENDEAVOUR revealed it was able to efficiently prioritize 627 genes in disease data sets and 76 genes in biological pathway sets, identify candidates of 16 mono- or polygenic diseases, and discover regulatory genes of myeloid differentiation. Furthermore, the approach identified YPEL1 as a novel gene involved in craniofacial development from a 2-Mb chromosomal region, deleted in some patients with DiGeorge-like birth defects. Finally, we are currently evaluating a pipeline combining array-CGH, ENDEAVOUR and in vivo validation in zebrafish to identify novel genes involved in congenital heart defects. Mark Broom 1 , Graeme Ruxton 2 , Rebecca Kilner 311 Mathematics Dept., University of Sussex, UK 12 Division of Environmental and Evolutionary Biology, University of Glasgow, UK 13 Department of Zoology, University of Cambridge, UK Keywords: Evolutionarily stable strategy, parasitism, asymmetric game Brood parasites chicks vary in the harm that they do to their companions in the nest. In this presentation we use game-theoretic methods to model this variation. Our model considers hosts which potentially abandon single nestlings and instead choose to re-allocate their reproductive effort to future breeding, irrespective of whether the abandoned chick is the host's young or a brood parasite's. The parasite chick must decide whether or not to kill host young by balancing the benefits from reduced competition in the nest against the risk of desertion by host parents. The model predicts that three different types of evolutionarily stable strategies can exist. (1) Hosts routinely rear depleted broods, the brood parasite always kills host young and the host never then abandons the nest. (2) When adult survival after deserting single offspring is very high, hosts always abandon broods of a single nestling and the parasite never kills host offspring, effectively holding them as hostages to prevent nest desertion. (3) Intermediate strategies, in which parasites sometimes kill their nest-mates and host parents sometimes desert nests that contain only a single chick, can also be evolutionarily stable. We provide quantitative descriptions of how the values given to ecological and behavioral parameters of the host-parasite system influence the likelihood of each strategy and compare our results with real host-brood parasite associations in nature. Martin Harrison 114 Mathematics Dept, University of Sussex, UK Keywords: Brood parasitism, games, host, parasite The interaction between hosts and parasites in bird populations has been studied extensively. Game theoretical methods have been used to model this interaction previously, but this has not been studied extensively taking into account the sequential nature of this game. We consider a model allowing the host and parasite to make a number of decisions, which depend on a number of natural factors. The host lays an egg, a parasite bird will arrive at the nest with a certain probability and then chooses to destroy a number of the host eggs and lay one of it's own. With some destruction occurring, either natural or through the actions of the parasite, the host chooses to continue, eject an egg (hoping to eject the parasite) or abandon the nest. Once the eggs have hatched the game then falls to the parasite chick versus the host. The chick chooses to destroy or eject a number of eggs. The final decision is made by the host, choosing whether to raise or abandon the chicks that are in the nest. We consider various natural parameters and probabilities which influence these decisions. We then use this model to look at real-world situations of the interactions of the Reed Warbler and two different parasites, the Common Cuckoo and the Brown-Headed Cowbird. These two parasites have different methods in the way that they parasitize the nests of their hosts. The hosts in turn have a different reaction to these parasites. Arne Jochens 1 , Amke Caliebe 2 , Uwe Roesler 1 , Michael Krawczak 215 Mathematical Seminar, University of Kiel, Germany 16 Institute of Medical Informatics and Statistics, University of Kiel, Germany Keywords: Stepwise mutation model, microsatellite, recursion equation, temporal behaviour We consider the stepwise mutation model which occurs, e.g., in microsatellite loci. Let X(t,i) denote the allelic state of individual i at time t. We compute expectation, variance and covariance of X(t,i), i=1,,,N, and provide a recursion equation for P(X(t,i)=z). Because the variance of X(t,i) goes to infinity as t grows, for the description of the temporal behaviour, we regard the scaled process X(t,i)-X(t,1). The results furnish a better understanding of the behaviour of the stepwise mutation model and may in future be used to derive tests for neutrality under this model. Paul O'Reilly 1 , Ewan Birney 2 , David Balding 117 Statistical Genetics, Department of Epidemiology and Public Health, Imperial, College London, UK 18 European Bioinformatics Institute, EMBL, Cambridge, UK Keywords: Positive selection, Recombination rate, LD, Genome-wide, Natural Selection In recent years efforts to develop population genetics methods that estimate rates of recombination and levels of natural selection in the human genome have intensified. However, since the two processes have an intimately related impact on genetic variation their inference is vulnerable to confounding. Genomic regions subject to recent selection are likely to have a relatively recent common ancestor and consequently less opportunity for historical recombinations that are detectable in contemporary populations. Here we show that selection can reduce the population-based recombination rate estimate substantially. In genome-wide studies for detecting selection we observe a tendency to highlight loci that are subject to low levels of recombination. We find that the outlier approach commonly adopted in such studies may have low power unless variable recombination is accounted for. We introduce a new genome-wide method for detecting selection that exploits the sensitivity to recent selection of methods for estimating recombination rates, while accounting for variable recombination using pedigree data. Through simulations we demonstrate the high power of the Ped/Pop approach to discriminate between neutral and adaptive evolution, particularly in the context of choosing outliers from a genome-wide distribution. Although methods have been developed showing good power to detect selection ,in action', the corresponding window of opportunity is small. In contrast, the power of the Ped/Pop method is maintained for many generations after the fixation of an advantageous variant Sarah Griffiths 1 , Frank Dudbridge 120 MRC Biostatistics Unit, Cambridge, UK Keywords: Genetic association, multimarker tag, haplotype, likelihood analysis In association studies it is generally too expensive to genotype all variants in all subjects. We can exploit linkage disequilibrium between SNPs to select a subset that captures the variation in a training data set obtained either through direct resequencing or a public resource such as the HapMap. These ,tag SNPs' are then genotyped in the whole sample. Multimarker tagging is a more aggressive adaptation of pairwise tagging that allows for combinations of two or more tag SNPs to predict an untyped SNP. Here we describe a new method for directly testing the association of an untyped SNP using a multimarker tag. Previously, other investigators have suggested testing a specific tag haplotype, or performing a weighted analysis using weights derived from the training data. However these approaches do not properly account for the imperfect correlation between the tag haplotype and the untyped SNP. Here we describe a straightforward approach to testing untyped SNPs using a missing-data likelihood analysis, including the tag markers as nuisance parameters. The training data is stacked on top of the main body of genotype data so there is information on how the tag markers predict the genotype of the untyped SNP. The uncertainty in this prediction is automatically taken into account in the likelihood analysis. This approach yields more power and also a more accurate prediction of the odds ratio of the untyped SNP. Anke Schulz 1 , Christine Fischer 2 , Jenny Chang-Claude 1 , Lars Beckmann 121 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany 22 Institute of Human Genetics, University of Heidelberg, Germany Keywords: Haplotype, haplotype sharing, entropy, Mantel statistics, marker selection We previously introduced a new method to map genes involved in complex diseases, using haplotype sharing-based Mantel statistics to correlate genetic and phenotypic similarity. Although the Mantel statistic is powerful in narrowing down candidate regions, the precise localization of a gene is hampered in genomic regions where linkage disequilibrium is so high that neighboring markers are found to be significant at similar magnitude and we are not able to discriminate between them. Here, we present a new approach to localize susceptibility genes by combining haplotype sharing-based Mantel statistics with an iterative entropy-based marker selection algorithm. For each marker at which the Mantel statistic is evaluated, the algorithm selects a subset of surrounding markers. The subset is chosen to maximize multilocus linkage disequilibrium, which is measured by the normalized entropy difference introduced by Nothnagel et al. (2002). We evaluated the algorithm with respect to type I error and power. Its ability to localize the disease variant was compared to the localization (i) without marker selection and (ii) considering haplotype block structure. Case-control samples were simulated from a set of 18 haplotypes, consisting of 15 SNPs in two haplotype blocks. The new algorithm gave correct type I error and yielded similar power to detect the disease locus compared to the alternative approaches. The neighboring markers were clearly less often significant than the causal locus, and also less often significant compared to the alternative approaches. Thus the new algorithm improved the precision of the localization of susceptibility genes. Mark M. Iles 123 Section of Epidemiology and Biostatistics, LIMM, University of Leeds, UK Keywords: tSNP, tagging, association, HapMap Tagging SNPs (tSNPs) are commonly used to capture genetic diversity cost-effectively. However, it is important that the efficacy of tSNPs is correctly estimated, otherwise coverage may be insufficient. If the pilot sample from which tSNPs are chosen is too small or the initial marker map too sparse, tSNP efficacy may be overestimated. An existing estimation method based on bootstrapping goes some way to correct for insufficient sample size and overfitting, but does not completely solve the problem. We describe a novel method, based on exclusion of haplotypes, that improves on the bootstrap approach. Using simulated data, the extent of the sample size problem is investigated and the performance of the bootstrap and the novel method are compared. We incorporate an existing method adjusting for marker density by ,SNP-dropping'. We find that insufficient sample size can cause large overestimates in tSNP efficacy, even with as many as 100 individuals, and the problem worsens as the region studied increases in size. Both the bootstrap and novel method correct much of this overestimate, with our novel method consistently outperforming the bootstrap method. We conclude that a combination of insufficient sample size and overfitting may lead to overestimation of tSNP efficacy and underpowering of studies based on tSNPs. Our novel approach corrects for much of this bias and is superior to the previous method. Sample sizes larger than previously suggested may still be required for accurate estimation of tSNP efficacy. This has obvious ramifications for the selection of tSNPs from HapMap data. Claudio Verzilli 1 , Juliet Chapman 1 , Aroon Hingorani 2 , Juan Pablo-Casas 1 , Tina Shah 2 , Liam Smeeth 1 , John Whittaker 124 Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, UK 25 Division of Medicine, University College London, UK Keywords: Meta-analysis, Genetic association studies We present a Bayesian hierarchical model for the meta-analysis of candidate gene studies with a continuous outcome. Such studies often report results from association tests for different, possibly study-specific and non-overlapping markers (typically SNPs) in the same genetic region. Meta analyses of the results at each marker in isolation are seldom appropriate as they ignore the correlation that may exist between markers due to linkage disequlibrium (LD) and cannot assess the relative importance of variants at each marker. Also such marker-wise meta analyses are restricted to only those studies that have typed the marker in question, with a potential loss of power. A better strategy is one which incorporates information about the LD between markers so that any combined estimate of the effect of each variant is corrected for the effect of other variants, as in multiple regression. Here we develop a Bayesian hierarchical linear regression that models the observed genotype group means and uses pairwise LD measurements between markers as prior information to make posterior inference on adjusted effects. The approach is applied to the meta analysis of 24 studies assessing the effect of 7 variants in the C-reactive protein (CRP) gene region on plasma CRP levels, an inflammatory biomarker shown in observational studies to be positively associated with cardiovascular disease. Cathryn M. Lewis 1 , Christopher G. Mathew 1 , Theresa M. Marteau 226 Dept. of Medical and Molecular Genetics, King's College London, UK 27 Department of Psychology, King's College London, UK Keywords: Risk, genetics, CARD15, smoking, model Recently progress has been made in identifying mutations that confer susceptibility to complex diseases, with the potential to use these mutations in determining disease risk. We developed methods to estimate disease risk based on genotype relative risks (for a gene G), exposure to an environmental factor (E), and family history (with recurrence risk ,R for a relative of type R). ,R must be partitioned into the risk due to G (which is modelled independently) and the residual risk. The risk model was then applied to Crohn's disease (CD), a severe gastrointestinal disease for which smoking increases disease risk approximately 2-fold, and mutations in CARD15 confer increased risks of 2.25 (for carriers of a single mutation) and 9.3 (for carriers of two mutations). CARD15 accounts for only a small proportion of the genetic component of CD, with a gene-specific ,S, CARD15 of 1.16, from a total sibling relative risk of ,S= 27. CD risks were estimated for high-risk individuals who are siblings of a CD case, and who also smoke. The CD risk to such individuals who carry two CARD15 mutations is approximately 0.34, and for those carrying a single CARD15 mutation the risk is 0.08, compared to a population prevalence of approximately 0.001. These results imply that complex disease genes may be valuable in estimating with greater precision than has hitherto been possible disease risks in specific, easily identified subgroups of the population with a view to prevention. Yurii Aulchenko 128 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Compression, information, bzip2, genome-wide SNP data, statistical genetics With advances in molecular technology, studies accessing millions of genetic polymorphisms in thousands of study subjects will soon become common. Such studies generate large amounts of data, whose effective storage and management is a challenge to the modern statistical genetics. Standard file compression utilities, such as Zip, Gzip and Bzip2, may be helpful to minimise the storage requirements. Less obvious is the fact that the data compression techniques may be also used in the analysis of genetic data. It is known that the efficiency of a particular compression algorithm depends on the probability structure of the data. In this work, we compared different standard and customised tools using the data from human HapMap project. Secondly, we investigate the potential uses of data compression techniques for the analysis of linkage, association and linkage disequilibrium Suzanne Leal 1 , Bingshan Li 129 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA Keywords: Consanguineous pedigrees, missing genotype data Missing genotype data can increase false-positive evidence for linkage when either parametric or nonparametric analysis is carried out ignoring intermarker linkage disequilibrium (LD). Previously it was demonstrated by Huang et al (2005) that no bias occurs in this situation for affected sib-pairs with unrelated parents when either both parents are genotyped or genotype data is available for two additional unaffected siblings when parental genotypes are missing. However, this is not the case for consanguineous pedigrees, where missing genotype data for any pedigree member within a consanguinity loop can increase false-positive evidence of linkage. The false-positive evidence for linkage is further increased when cryptic consanguinity is present. The amount of false-positive evidence for linkage is highly dependent on which family members are genotyped. When parental genotype data is available, the false-positive evidence for linkage is usually not as strong as when parental genotype data is unavailable. Which family members will aid in the reduction of false-positive evidence of linkage is highly dependent on which other family members are genotyped. For a pedigree with an affected proband whose first-cousin parents have been genotyped, further reduction in the false-positive evidence of linkage can be obtained by including genotype data from additional affected siblings of the proband or genotype data from the proband's sibling-grandparents. When parental genotypes are not available, false-positive evidence for linkage can be reduced by including in the analysis genotype data from either unaffected siblings of the proband or the proband's married-in-grandparents. Najaf Amin 1 , Yurii Aulchenko 130 Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, The Netherlands Keywords: Genomic Control, pedigree structure, quantitative traits The Genomic Control (GC) method was originally developed to control for population stratification and cryptic relatedness in association studies. This method assumes that the effect of population substructure on the test statistics is essentially constant across the genome, and therefore unassociated markers can be used to estimate the effect of confounding onto the test statistic. The properties of GC method were extensively investigated for different stratification scenarios, and compared to alternative methods, such as the transmission-disequilibrium test. The potential of this method to correct not for occasional cryptic relations, but for regular pedigree structure, however, was not investigated before. In this work we investigate the potential of the GC method for pedigree-based association analysis of quantitative traits. The power and type one error of the method was compared to standard methods, such as the measured genotype (MG) approach and quantitative trait transmission-disequilibrium test. In human pedigrees, with trait heritability varying from 30 to 80%, the power of MG and GC approach was always higher than that of TDT. GC had correct type 1 error and its power was close to that of MG under moderate heritability (30%), but decreased with higher heritability. William Astle 1 , Chris Holmes 2 , David Balding 131 Department of Epidemiology and Public Health, Imperial College London, UK 32 Department of Statistics, University of Oxford, UK Keywords: Population structure, association studies, genetic epidemiology, statistical genetics In the analysis of population association studies, Genomic Control (Devlin & Roeder, 1999) (GC) adjusts the Armitage test statistic to correct the type I error for the effects of population substructure, but its power is often sub-optimal. Turbo Genomic Control (TGC) generalises GC to incorporate co-variation of relatedness and phenotype, retaining control over type I error while improving power. TGC is similar to the method of Yu et al. (2006), but we extend it to binary (case-control) in addition to quantitative phenotypes, we implement improved estimation of relatedness coefficients, and we derive an explicit statistic that generalizes the Armitage test statistic and is fast to compute. TGC also has similarities to EIGENSTRAT (Price et al., 2006) which is a new method based on principle components analysis. The problems of population structure(Clayton et al., 2005) and cryptic relatedness (Voight & Pritchard, 2005) are essentially the same: if patterns of shared ancestry differ between cases and controls, whether distant (coancestry) or recent (cryptic relatedness), false positives can arise and power can be diminished. With large numbers of widely-spaced genetic markers, coancestry can now be measured accurately for each pair of individuals via patterns of allele-sharing. Instead of modelling subpopulations, we work instead with a coancestry coefficient for each pair of individuals in the study. We explain the relationships between TGC, GC and EIGENSTRAT. We present simulation studies and real data analyses to illustrate the power advantage of TGC in a range of scenarios incorporating both substructure and cryptic relatedness. References Clayton, D. al. (2005) Population structure, differential bias and genomic control in a large-scale case-control association study. Nature Genetics37(11) November 2005. Devlin, B. & Roeder, K. (1999) Genomic control for association studies. Biometics55(4) December 1999. Price, A. al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics38(8) (August 2006). Voight, B. J. & Pritchard, J. K. (2005) Confounding from cryptic relatedness in case-control association studies. Public Library of Science Genetics1(3) September 2005. Yu, al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics38(2) February 2006. Hervé Perdry 1 , Marie-Claude Babron 1 , Françoise Clerget-Darpoux 133 INSERM U535 and Univ. Paris Sud, UMR-S 535, Villejuif, France Keywords: Modifier genes, case-parents trios, ordered transmission disequilibrium test A modifying locus is a polymorphic locus, distinct from the disease locus, which leads to differences in the disease phenotype, either by modifying the penetrance of the disease allele, or by modifying the expression of the disease. The effect of such a locus is a clinical heterogeneity that can be reflected by the values of an appropriate covariate, such as the age of onset, or the severity of the disease. We designed the Ordered Transmission Disequilibrium Test (OTDT) to test for a relation between the clinical heterogeneity, expressed by the covariate, and marker genotypes of a candidate gene. The method applies to trio families with one affected child and his parents. Each family member is genotyped at a bi-allelic marker M of a candidate gene. To each of the families is associated a covariate value; the families are ordered on the values of this covariate. As the TDT (Spielman et al. 1993), the OTDT is based on the observation of the transmission rate T of a given allele at M. The OTDT aims to find a critical value of the covariate which separates the sample of families in two subsamples in which the transmission rates are significantly different. We investigate the power of the method by simulations under various genetic models and covariate distributions. Acknowledgments H Perdry is funded by ARSEP. Pascal Croiseau 1 , Heather Cordell 2 , Emmanuelle Génin 134 INSERM U535 and University Paris Sud, UMR-S535, Villejuif, France 35 Institute of Human Genetics, Newcastle University, UK Keywords: Association, missing data, conditionnal logistic regression Missing data is an important problem in association studies. Several methods used to test for association need that individuals be genotyped at the full set of markers. Individuals with missing data need to be excluded from the analysis. This could involve an important decrease in sample size and a loss of information. If the disease susceptibility locus (DSL) is poorly typed, it is also possible that a marker in linkage disequilibrium gives a stronger association signal than the DSL. One may then falsely conclude that the marker is more likely to be the DSL. We recently developed a Multiple Imputation method to infer missing data on case-parent trios Starting from the observed data, a few number of complete data sets are generated by Markov-Chain Monte Carlo approach. These complete datasets are analysed using standard statistical package and the results are combined as described in Little & Rubin (2002). Here we report the results of simulations performed to examine, for different patterns of missing data, how often the true DSL gives the highest association score among different loci in LD. We found that multiple imputation usually correctly detect the DSL site even if the percentage of missing data is high. This is not the case for the naïve approach that consists in discarding trios with missing data. In conclusion, Multiple imputation presents the advantage of being easy to use and flexible and is therefore a promising tool in the search for DSL involved in complex diseases. Salma Kotti 1 , Heike Bickeböller 2 , Françoise Clerget-Darpoux 136 University Paris Sud, UMR-S535, Villejuif, France 37 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany Keywords: Genotype relative risk, internal controls, Family based analyses Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRRs. We will analytically derive the GRR estimators for the 1:1 and 1:3 matching and will present the results at the meeting. Family based analyses using internal controls are very popular both for detecting the effect of a genetic factor and for estimating the relative disease risk on the corresponding genotypes. Two different procedures are often applied to reconstitute internal controls. The first one considers one pseudocontrol genotype formed by the parental non-transmitted alleles called also 1:1 matching of alleles, while the second corresponds to three pseudocontrols corresponding to all genotypes formed by the parental alleles except the one of the case (1:3 matching). Many studies have compared between the two procedures in terms of the power and have concluded that the difference depends on the underlying genetic model and the allele frequencies. However, the estimation of the Genotype Relative Risk (GRR) under the two procedures has not been studied. Based on the fact that on the 1:1 matching, the control group is composed of the alleles untransmitted to the affected child and on the 1:3 matching, the control group is composed amongst alleles already transmitted to the affected child, we expect a difference on the GRR estimation. In fact, we suspect that the second procedure leads to biased estimation of the GRR. We will analytically derive the GRR estimator for the 1:1 and 1:3 matching and will present the results at the meeting. Luigi Palla 1 , David Siegmund 239 Department of Mathematics,Free University Amsterdam, The Netherlands 40 Department of Statistics, Stanford University, California, USA Keywords: TDT, assortative mating, inbreeding, statistical power A substantial amount of Assortative Mating (AM) is often recorded on physical and psychological, dichotomous as well as quantitative traits that are supposed to have a multifactorial genetic component. In particular AM has the effect of increasing the genetic variance, even more than inbreeding because it acts across loci beside within loci, when the trait has a multifactorial origin. Under the assumption of a polygenic model for AM dating back to Wright (1921) and refined by Crow and Felsenstein (1968,1982), the effect of assortative mating on the power to detect genetic association in the Transmission Disequilibrium Test (TDT) is explored as parameters, such as the effective number of genes and the allelic frequency vary. The power is reflected by the non centrality parameter of the TDT and is expressed as a function of the number of trios, the relative risk of the heterozygous genotype and the allele frequency (Siegmund and Yakir, 2007). The noncentrality parameter of the relevant score statistic is updated considering the effect of AM which is expressed in terms of an ,effective' inbreeding coefficient. In particular, for dichotomous traits it is apparent that the higher the number of genes involved in the trait, the lower the loss in power due to AM. Finally an attempt is made to extend this relation to the Q-TDT (Rabinowitz, 1997), which involves considering the effect of AM also on the phenotypic variance of the trait of interest, under the assumption that AM affects only its additive genetic component. References Crow, & Felsenstein, (1968). The effect of assortative mating on the genetic composition of a population. Eugen.Quart.15, 87,97. Rabinowitz,, 1997. A Transmission Disequilibrium Test for Quantitative Trait Loci. Human Heredity47, 342,350. Siegmund, & Yakir, (2007) Statistics of gene mapping, Springer. Wright, (1921). System of mating.III. Assortative mating based on somatic resemblance. Genetics6, 144,161. Jérémie Nsengimana 1 , Ben D Brown 2 , Alistair S Hall 2 , Jenny H Barrett 141 Leeds Institute of Molecular Medicine, University of Leeds, UK 42 Leeds Institute for Genetics, Health and Therapeutics, University of Leeds, UK Keywords: Inflammatory genes, haplotype, coronary artery disease Genetic Risk of Acute Coronary Events (GRACE) is an initiative to collect cases of coronary artery disease (CAD) and their unaffected siblings in the UK and to use them to map genetic variants increasing disease risk. The aim of the present study was to test the association between CAD and 51 single nucleotide polymorphisms (SNPs) and their haplotypes from 35 inflammatory genes. Genotype data were available for 1154 persons affected before age 66 (including 48% before age 50) and their 1545 unaffected siblings (891 discordant families). Each SNP was tested for association to CAD, and haplotypes within genes or gene clusters were tested using FBAT (Rabinowitz & Laird, 2000). For the most significant results, genetic effect size was estimated using conditional logistic regression (CLR) within STATA adjusting for other risk factors. Haplotypes were assigned using HAPLORE (Zhang et al., 2005), which considers all parental mating types consistent with offspring genotypes and assigns them a probability of occurence. This probability was used in CLR to weight the haplotypes. In the single SNP analysis, several SNPs showed some evidence for association, including one SNP in the interleukin-1A gene. Analysing haplotypes in the interleukin-1 gene cluster, a common 3-SNP haplotype was found to increase the risk of CAD (P = 0.009). In an additive genetic model adjusting for covariates the odds ratio (OR) for this haplotype is 1.56 (95% CI: 1.16-2.10, p = 0.004) for early-onset CAD (before age 50). This study illustrates the utility of haplotype analysis in family-based association studies to investigate candidate genes. References Rabinowitz, D. & Laird, N. M. (2000) Hum Hered50, 211,223. Zhang, K., Sun, F. & Zhao, H. (2005) Bioinformatics21, 90,103. Andrea Foulkes 1 , Recai Yucel 1 , Xiaohong Li 143 Division of Biostatistics, University of Massachusetts, USA Keywords: Haploytpe, high-dimensional, mixed modeling The explosion of molecular level information coupled with large epidemiological studies presents an exciting opportunity to uncover the genetic underpinnings of complex diseases; however, several analytical challenges remain to be addressed. Characterizing the components to complex diseases inevitably requires consideration of synergies across multiple genetic loci and environmental and demographic factors. In addition, it is critical to capture information on allelic phase, that is whether alleles within a gene are in cis (on the same chromosome) or in trans (on different chromosomes.) In associations studies of unrelated individuals, this alignment of alleles within a chromosomal copy is generally not observed. We address the potential ambiguity in allelic phase in this high dimensional data setting using mixed effects models. Both a semi-parametric and fully likelihood-based approach to estimation are considered to account for missingness in cluster identifiers. In the first case, we apply a multiple imputation procedure coupled with a first stage expectation maximization algorithm for parameter estimation. A bootstrap approach is employed to assess sensitivity to variability induced by parameter estimation. Secondly, a fully likelihood-based approach using an expectation conditional maximization algorithm is described. Notably, these models allow for characterizing high-order gene-gene interactions while providing a flexible statistical framework to account for the confounding or mediating role of person specific covariates. The proposed method is applied to data arising from a cohort of human immunodeficiency virus type-1 (HIV-1) infected individuals at risk for therapy associated dyslipidemia. Simulation studies demonstrate reasonable power and control of family-wise type 1 error rates. Vivien Marquard 1 , Lars Beckmann 1 , Jenny Chang-Claude 144 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Genotyping errors, type I error, haplotype-based association methods It has been shown in several simulation studies that genotyping errors may have a great impact on the type I error of statistical methods used in genetic association analysis of complex diseases. Our aim was to investigate type I error rates in a case-control study, when differential and non-differential genotyping errors were introduced in realistic scenarios. We simulated case-control data sets, where individual genotypes were drawn from a haplotype distribution of 18 haplotypes with 15 markers in the APM1 gene. Genotyping errors were introduced following the unrestricted and symmetric with 0 edges error models described by Heid et al. (2006). In six scenarios, errors resulted from changes of one allele to another with predefined probabilities of 1%, 2.5% or 10%, respectively. A multiple number of errors per haplotype was possible and could vary between 0 and 15, the number of markers investigated. We examined three association methods: Mantel statistics using haplotype-sharing; a haplotype-specific score test; and Armitage trend test for single markers. The type I error rates were not influenced for any of all the three methods for a genotyping error rate of less than 1%. For higher error rates and differential errors, the type I error of the Mantel statistic was only slightly and of the Armitage trend test moderately increased. The type I error rates of the score test were highly increased. The type I error rates were correct for all three methods for non-differential errors. Further investigations will be carried out with different frequencies of differential error rates and focus on power. Arne Neumann 1 , Dörthe Malzahn 1 , Martina Müller 2 , Heike Bickeböller 145 Department of Genetic Epidemiology, Medical School, University of Göttingen, Germany 46 GSF-National Research Center for Environment and Health, Neuherberg & IBE-Institute of Epidemiology, Ludwig-Maximilians University München, Germany Keywords: Interaction, longitudinal, nonparametric Longitudinal data show the time dependent course of phenotypic traits. In this contribution, we consider longitudinal cohort studies and investigate the association between two candidate genes and a dependent quantitative longitudinal phenotype. The set-up defines a factorial design which allows us to test simultaneously for the overall gene effect of the loci as well as for possible gene-gene and gene time interaction. The latter would induce genetically based time-profile differences in the longitudinal phenotype. We adopt a non-parametric statistical test to genetic epidemiological cohort studies and investigate its performance by simulation studies. The statistical test was originally developed for longitudinal clinical studies (Brunner, Munzel, Puri, 1999 J Multivariate Anal 70:286-317). It is non-parametric in the sense that no assumptions are made about the underlying distribution of the quantitative phenotype. Longitudinal observations belonging to the same individual can be arbitrarily dependent on one another for the different time points whereas trait observations of different individuals are independent. The two loci are assumed to be statistically independent. Our simulations show that the nonparametric test is comparable with ANOVA in terms of power of detecting gene-gene and gene-time interaction in an ANOVA favourable setting. Rebecca Hein 1 , Lars Beckmann 1 , Jenny Chang-Claude 147 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ) Heidelberg, Germany Keywords: Indirect association studies, interaction effects, linkage disequilibrium, marker allele frequency Association studies accounting for gene-environment interactions (GxE) may be useful for detecting genetic effects and identifying important environmental effect modifiers. Current technology facilitates very dense marker spacing in genetic association studies; however, the true disease variant(s) may not be genotyped. In this situation, an association between a gene and a phenotype may still be detectable, using genetic markers associated with the true disease variant(s) (indirect association). Zondervan and Cardon [2004] showed that the odds ratios (OR) of markers which are associated with the disease variant depend highly on the linkage disequilibrium (LD) between the variant and the markers, and whether the allele frequencies match and thereby influence the sample size needed to detect genetic association. We examined the influence of LD and allele frequencies on the sample size needed to detect GxE in indirect association studies, and provide tables for sample size estimation. For discordant allele frequencies and incomplete LD, sample sizes can be unfeasibly large. The influence of both factors is stronger for disease loci with small rather than moderate to high disease allele frequencies. A decline in D' of e.g. 5% has less impact on sample size than increasing the difference in allele frequencies by the same percentage. Assuming 80% power, large interaction effects can be detected using smaller sample sizes than those needed for the detection of main effects. The detection of interaction effects involving rare alleles may not be possible. Focussing only on marker density can be a limited strategy in indirect association studies for GxE. Cyril Dalmasso 1 , Emmanuelle Génin 2 , Catherine Bourgain 2 , Philippe Broët 148 JE 2492 , Univ. Paris-Sud, France 49 INSERM UMR-S 535 and University Paris Sud, Villejuif, France Keywords: Linkage analysis, Multiple testing, False Discovery Rate, Mixture model In the context of genome-wide linkage analyses, where a large number of statistical tests are simultaneously performed, the False Discovery Rate (FDR) that is defined as the expected proportion of false discoveries among all discoveries is nowadays widely used for taking into account the multiple testing problem. Other related criteria have been considered such as the local False Discovery Rate (lFDR) that is a variant of the FDR giving to each test its own measure of significance. The lFDR is defined as the posterior probability that a null hypothesis is true. Most of the proposed methods for estimating the lFDR or the FDR rely on distributional assumption under the null hypothesis. However, in observational studies, the empirical null distribution may be very different from the theoretical one. In this work, we propose a mixture model based approach that provides estimates of the lFDR and the FDR in the context of large-scale variance component linkage analyses. In particular, this approach allows estimating the empirical null distribution, this latter being a key quantity for any simultaneous inference procedure. The proposed method is applied on a real dataset. Arief Gusnanto 1 , Frank Dudbridge 150 MRC Biostatistics Unit, Cambridge UK Keywords: Significance, genome-wide, association, permutation, multiplicity Genome-wide association scans have introduced statistical challenges, mainly in the multiplicity of thousands of tests. The question of what constitutes a significant finding remains somewhat unresolved. Permutation testing is very time-consuming, whereas Bayesian arguments struggle to distinguish direct from indirect association. It seems attractive to summarise the multiplicity in a simple form that allows users to avoid time-consuming permutations. A standard significance level would facilitate reporting of results and reduce the need for permutation tests. This is potentially important because current scans do not have full coverage of the whole genome, and yet, the implicit multiplicity is genome-wide. We discuss some proposed summaries, with reference to the empirical null distribution of the multiple tests, approximated through a large number of random permutations. Using genome-wide data from the Wellcome Trust Case-Control Consortium, we use a sub-sampling approach with increasing density to estimate the nominal p-value to obtain family-wise significance of 5%. The results indicate that the significance level is converging to about 1e-7 as the marker spacing becomes infinitely dense. We considered the concept of an effective number of independent tests, and showed that when used in a Bonferroni correction, the number varies with the overall significance level, but is roughly constant in the region of interest. We compared several estimators of the effective number of tests, and showed that in the region of significance of interest, Patterson's eigenvalue based estimator gives approximately the right family-wise error rate. Michael Nothnagel 1 , Amke Caliebe 1 , Michael Krawczak 151 Institute of Medical Informatics and Statistics, University Clinic Schleswig-Holstein, University of Kiel, Germany Keywords: Association scans, Bayesian framework, posterior odds, genetic risk, multiplicative model Whole-genome association scans have been suggested to be a cost-efficient way to survey genetic variation and to map genetic disease factors. We used a Bayesian framework to investigate the posterior odds of a genuine association under multiplicative disease models. We demonstrate that the p value alone is not a sufficient means to evaluate the findings in association studies. We suggest that likelihood ratios should accompany p values in association reports. We argue, that, given the reported results of whole-genome scans, more associations should have been successfully replicated if the consistently made assumptions about considerable genetic risks were correct. We conclude that it is very likely that the vast majority of relative genetic risks are only of the order of 1.2 or lower. Clive Hoggart 1 , Maria De Iorio 1 , John Whittakker 2 , David Balding 152 Department of Epidemiology and Public Health, Imperial College London, UK 53 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: Genome-wide association analyses, shrinkage priors, Lasso Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants of small effect, which is a plausible scenario for many complex diseases. Moreover, many simulation studies assume a single causal variant and so more complex realities are ignored. Analysing large numbers of variants simultaneously is now becoming feasible, thanks to developments in Bayesian stochastic search methods. We pose the problem of SNP selection as variable selection in a regression model. In contrast to single SNP tests this approach simultaneously models the effect of all SNPs. SNPs are selected by a Bayesian interpretation of the lasso (Tibshirani, 1996); the maximum a posterior (MAP) estimate of the regression coefficients, which have been given independent, double exponential prior distributions. The double exponential distribution is an example of a shrinkage prior, MAP estimates with shrinkage priors can be zero, thus all SNPs with non zero regression coefficients are selected. In addition to the commonly-used double exponential (Laplace) prior, we also implement the normal exponential gamma prior distribution. We show that use of the Laplace prior improves SNP selection in comparison with single -SNP tests, and that the normal exponential gamma prior leads to a further improvement. Our method is fast and can handle very large numbers of SNPs: we demonstrate its performance using both simulated and real genome-wide data sets with 500 K SNPs, which can be analysed in 2 hours on a desktop workstation. Mickael Guedj 1,2 , Jerome Wojcik 2 , Gregory Nuel 154 Laboratoire Statistique et Génome, Université d'Evry, Evry France 55 Serono Pharmaceutical Research Institute, Plan-les-Ouates, Switzerland Keywords: Local Replication, Local Score, Association In gene-mapping, replication of initial findings has been put forwards as the approach of choice for filtering false-positives from true signals for underlying loci. In practice, such replications are however too poorly observed. Besides the statistical and technical-related factors (lack of power, multiple-testing, stratification, quality control,) inconsistent conclusions obtained from independent populations might result from real biological differences. In particular, the high degree of variation in the strength of LD among populations of different origins is a major challenge to the discovery of genes. Seeking for Local Replications (defined as the presence of a signal of association in a same genomic region among populations) instead of strict replications (same locus, same risk allele) may lead to more reliable results. Recently, a multi-markers approach based on the Local Score statistic has been proposed as a simple and efficient way to select candidate genomic regions at the first stage of genome-wide association studies. Here we propose an extension of this approach adapted to replicated association studies. Based on simulations, this method appears promising. In particular it outperforms classical simple-marker strategies to detect modest-effect genes. Additionally it constitutes, to our knowledge, a first framework dedicated to the detection of such Local Replications. Juliet Chapman 1 , Claudio Verzilli 1 , John Whittaker 156 Department of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, UK Keywords: FDR, Association studies, Bayesian model selection As genomewide association studies become commonplace there is debate as to how such studies might be analysed and what we might hope to gain from the data. It is clear that standard single locus approaches are limited in that they do not adjust for the effects of other loci and problematic since it is not obvious how to adjust for multiple comparisons. False discovery rates have been suggested, but it is unclear how well these will cope with highly correlated genetic data. We consider the validity of standard false discovery rates in large scale association studies. We also show that a Bayesian procedure has advantages in detecting causal loci amongst a large number of dependant SNPs and investigate properties of a Bayesian FDR. Peter Kraft 157 Harvard School of Public Health, Boston USA Keywords: Gene-environment interaction, genome-wide association scans Appropriately analyzed two-stage designs,where a subset of available subjects are genotyped on a genome-wide panel of markers at the first stage and then a much smaller subset of the most promising markers are genotyped on the remaining subjects,can have nearly as much power as a single-stage study where all subjects are genotyped on the genome-wide panel yet can be much less expensive. Typically, the "most promising" markers are selected based on evidence for a marginal association between genotypes and disease. Subsequently, the few markers found to be associated with disease at the end of the second stage are interrogated for evidence of gene-environment interaction, mainly to understand their impact on disease etiology and public health impact. However, this approach may miss variants which have a sizeable effect restricted to one exposure stratum and therefore only a modest marginal effect. We have proposed to use information on the joint effects of genes and a discrete list of environmental exposures at the initial screening stage to select promising markers for the second stage [Kraft et al Hum Hered 2007]. This approach optimizes power to detect variants that have a sizeable marginal effect and variants that have a small marginal effect but a sizeable effect in a stratum defined by an environmental exposure. As an example, I discuss a proposed genome-wide association scan for Type II diabetes susceptibility variants based in several large nested case-control studies. Beate Glaser 1 , Peter Holmans 158 Biostatistics and Bioinformatics Unit, Cardiff University, School of Medicine, Heath Park, Cardiff, UK Keywords: Combined case-control and trios analysis, Power, False-positive rate, Simulation, Association studies The statistical power of genetic association studies can be enhanced by combining the analysis of case-control with parent-offspring trio samples. Various combined analysis techniques have been recently developed; as yet, there have been no comparisons of their power. This work was performed with the aim of identifying the most powerful method among available combined techniques including test statistics developed by Kazeem and Farrall (2005), Nagelkerke and colleagues (2004) and Dudbridge (2006), as well as a simple combination of ,2-statistics from single samples. Simulation studies were performed to investigate their power under different additive, multiplicative, dominant and recessive disease models. False-positive rates were determined by studying the type I error rates under null models including models with unequal allele frequencies between the single case-control and trios samples. We identified three techniques with equivalent power and false-positive rates, which included modifications of the three main approaches: 1) the unmodified combined Odds ratio estimate by Kazeem & Farrall (2005), 2) a modified approach of the combined risk ratio estimate by Nagelkerke & colleagues (2004) and 3) a modified technique for a combined risk ratio estimate by Dudbridge (2006). Our work highlights the importance of studies investigating test performance criteria of novel methods, as they will help users to select the optimal approach within a range of available analysis techniques. David Almorza 1 , M.V. Kandus 2 , Juan Carlos Salerno 2 , Rafael Boggio 359 Facultad de Ciencias del Trabajo, University of Cádiz, Spain 60 Instituto de Genética IGEAF, Buenos Aires, Argentina 61 Universidad Nacional de La Plata, Buenos Aires, Argentina Keywords: Principal component analysis, maize, ear weight, inbred lines The objective of this work was to evaluate the relationship among different traits of the ear of maize inbred lines and to group genotypes according to its performance. Ten inbred lines developed at IGEAF (INTA Castelar) and five public inbred lines as checks were used. A field trial was carried out in Castelar, Buenos Aires (34° 36' S , 58° 39' W) using a complete randomize design with three replications. At harvest, individual weight (P.E.), diameter (D.E.), row number (N.H.) and length (L.E.) of the ear were assessed. A principal component analysis, PCA, (Infostat 2005) was used, and the variability of the data was depicted with a biplot. Principal components 1 and 2 (CP1 and CP2) explained 90% of the data variability. CP1 was correlated with P.E., L.E. and D.E., meanwhile CP2 was correlated with N.H. We found that individual weight (P.E.) was more correlated with diameter of the ear (D.E.) than with length (L.E). Five groups of inbred lines were distinguished: with high P.E. and mean N.H. (04-70, 04-73, 04-101 and MO17), with high P.E. but less N.H. (04-61 and B14), with mean P.E. and N.H. (B73, 04-123 and 04-96), with high N.H. but less P.E. (LP109, 04-8, 04-91 and 04-76) and with low P.E. and low N.H. (LP521 and 04-104). The use of PCA showed which variables had more incidence in ear weight and how is the correlation among them. Moreover, the different groups found with this analysis allow the evaluation of inbred lines by several traits simultaneously. Sven Knüppel 1 , Anja Bauerfeind 1 , Klaus Rohde 162 Department of Bioinformatics, MDC Berlin, Germany Keywords: Haplotypes, association studies, case-control, nuclear families The area of gene chip technology provides a plethora of phase-unknown SNP genotypes in order to find significant association to some genetic trait. To circumvent possibly low information content of a single SNP one groups successive SNPs and estimates haplotypes. Haplotype estimation, however, may reveal ambiguous haplotype pairs and bias the application of statistical methods. Zaykin et al. (Hum Hered, 53:79-91, 2002) proposed the construction of a design matrix to take this ambiguity into account. Here we present a set of functions written for the Statistical package R, which carries out haplotype estimation on the basis of the EM-algorithm for individuals (case-control) or nuclear families. The construction of a design matrix on basis of estimated haplotypes or haplotype pairs allows application of standard methods for association studies (linear, logistic regression), as well as statistical methods as haplotype sharing statistics and TDT-Test. Applications of these methods to genome-wide association screens will be demonstrated. Manuela Zucknick 1 , Chris Holmes 2 , Sylvia Richardson 163 Department of Epidemiology and Public Health, Imperial College London, UK 64 Department of Statistics, Oxford Center for Gene Function, University of Oxford, UK Keywords: Bayesian, variable selection, MCMC, large p, small n, structured dependence In large-scale genomic applications vast numbers of markers or genes are scanned to find a few candidates which are linked to a particular phenotype. Statistically, this is a variable selection problem in the "large p, small n" situation where many more variables than samples are available. An additional feature is the complex dependence structure which is often observed among the markers/genes due to linkage disequilibrium or their joint involvement in biological processes. Bayesian variable selection methods using indicator variables are well suited to the problem. Binary phenotypes like disease status are common and both Bayesian probit and logistic regression can be applied in this context. We argue that logistic regression models are both easier to tune and to interpret than probit models and implement the approach by Holmes & Held (2006). Because the model space is vast, MCMC methods are used as stochastic search algorithms with the aim to quickly find regions of high posterior probability. In a trade-off between fast-updating but slow-moving single-gene Metropolis-Hastings samplers and computationally expensive full Gibbs sampling, we propose to employ the dependence structure among the genes/markers to help decide which variables to update together. Also, parallel tempering methods are used to aid bold moves and help avoid getting trapped in local optima. Mixing and convergence of the resulting Markov chains are evaluated and compared to standard samplers in both a simulation study and in an application to a gene expression data set. Reference Holmes, C. C. & Held, L. (2006) Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis1, 145,168. Dawn Teare 165 MMGE, University of Sheffield, UK Keywords: CNP, family-based analysis, MCMC Evidence is accumulating that segmental copy number polymorphisms (CNPs) may represent a significant portion of human genetic variation. These highly polymorphic systems require handling as phenotypes rather than co-dominant markers, placing new demands on family-based analyses. We present an integrated approach to meet these challenges in the form of a graphical model, where the underlying discrete CNP phenotype is inferred from the (single or replicate) quantitative measure within the analysis, whilst assuming an allele based system segregating through the pedigree. [source]

    Susceptibility of Common and Rare Plant Species to the Genetic Consequences of Habitat Fragmentation

    diversidad genética; endogamia; fragmentación de hábitat; sistema reproductivo; tamaño poblacional Abstract:,Small plant populations are more prone to extinction due to the loss of genetic variation through random genetic drift, increased selfing, and mating among related individuals. To date, most researchers dealing with genetic erosion in fragmented plant populations have focused on threatened or rare species. We raise the question whether common plant species are as susceptible to habitat fragmentation as rare species. We conducted a formal meta-analysis of habitat fragmentation studies that reported both population size and population genetic diversity. We estimated the overall weighted mean and variance of the correlation coefficients among four different measures of genetic diversity and plant population size. We then tested whether rarity, mating system, and plant longevity are potential moderators of the relationship between population size and genetic diversity. Mean gene diversity, percent polymorphic loci, and allelic richness across studies were positively and highly significantly correlated with population size, whereas no significant relationship was found between population size and the inbreeding coefficient. Genetic diversity of self-compatible species was less affected by decreasing population size than that of obligate outcrossing and self-compatible but mainly outcrossing species. Longevity did not affect the population genetic response to fragmentation. Our most important finding, however, was that common species were as, or more, susceptible to the population genetic consequences of habitat fragmentation than rare species, even when historically or naturally rare species were excluded from the analysis. These results are dramatic in that many more plant species than previously assumed may be vulnerable to genetic erosion and loss of genetic diversity as a result of ongoing fragmentation processes. This implies that many fragmented habitats have become unable to support plant populations that are large enough to maintain a mutation-drift balance and that occupied habitat fragments have become too isolated to allow sufficient gene flow to enable replenishment of lost alleles. Resumen:,Las poblaciones pequeñas de plantas son más propensas a la extinción debido a la pérdida de variación genética por medio de la deriva génica aleatoria, el incremento de autogamia y la reproducción entre individuos emparentados. A la fecha, la mayoría de los investigadores que trabajan con erosión genética en poblaciones fragmentadas de plantas se han enfocado en las especies amenazadas o raras. Cuestionamos si las especies de plantas comunes son tan susceptibles a la fragmentación del hábitat como las especies raras. Realizamos un meta análisis formal de estudios de fragmentación que reportaron tanto tamaño poblacional como diversidad genética. Estimamos la media general ponderada y la varianza de los coeficientes de correlación entre cuatro medidas de diversidad genética y de tamaño poblacional de las plantas. Posteriormente probamos si la rareza, el sistema reproductivo y la longevidad de la planta son moderadores potenciales de la relación entre el tamaño poblacional y la diversidad genética. La diversidad genética promedio, el porcentaje de loci polimórficos y la riqueza alélica en los estudios tuvieron una correlación positiva y altamente significativa con el tamaño poblacional, mientras que no encontramos relación significativa entre el tamaño poblacional y el coeficiente de endogamia. La diversidad genética de especies auto compatibles fue menos afectada por la reducción en el tamaño poblacional que la de especies exogámicas obligadas y especies auto compatibles, pero principalmente exogámicas. La longevidad no afectó la respuesta genética de la población a la fragmentación. Sin embargo, nuestro hallazgo más importante fue que las especies comunes fueron tan, o más, susceptibles a las consecuencias genéticas de la fragmentación del hábitat que las especies raras, aun cuando las especies histórica o naturalmente raras fueron excluidas del análisis. Estos resultados son dramáticos porque muchas especies más pueden ser vulnerables a la erosión genética y a la pérdida de diversidad genética como consecuencia de los procesos de fragmentación que lo se asumía previamente. Esto implica que muchos hábitats fragmentados han perdido la capacidad para soportar poblaciones de plantas lo suficientemente grandes para mantener un equilibrio mutación-deriva y que los fragmentos de hábitat ocupados están tan aislados que el flujo génico es insuficiente para permitir la reposición de alelos perdidos. [source]

    Characterization of the plasticity-related gene, Arc, in the frog brain

    Lisa A. Mangiamele
    Abstract In mammals, expression of the immediate early gene Arc/Arg3.1 in the brain is induced by exposure to novel environments, reception of sensory stimuli, and production of learned behaviors, suggesting a potentially important role in neural and behavioral plasticity. To date, Arc has only been characterized in a few species of mammals and birds, which limits our ability to understand its role in modifying behavior. To begin to address this gap, we identified Arc in two frog species, Xenopus tropicalis and Physalaemus pustulosus, and characterized its expression in the brain of P. pustulosus. We found that the predicted protein for frog Arc shared 60% sequence similarity with Arc in other vertebrates, and we observed high Arc expression in the forebrain, but not the midbrain or hindbrain, of female túngara frogs sacrificed at breeding ponds. We also examined the time-course of Arc induction in the medial pallium, the homologue of the mammalian hippocampus, in response to a recording of a P. pustulosus mating chorus and found that accumulation of Arc mRNA peaked 0.75 h following stimulus onset. We found that the mating chorus also induced Arc expression in the lateral and ventral pallia and the medial septum, but not in the striatum, hypothalamus, or auditory midbrain. Finally, we examined acoustically induced Arc expression in response to different types of mating calls and found that Arc expression levels in the pallium and septum did not vary with the biological relevance or acoustic complexity of the signal. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 813,825, 2010 [source]

    New reproductive anomalies in fruitless -mutant Drosophila males: Extreme lengthening of mating durations and infertility correlated with defective serotonergic innervation of reproductive organs

    Gyunghee Lee
    Abstract Several features of male reproductive behavior are under the neural control of fruitless (fru) in Drosophila melanogaster. This gene is known to influence courtship steps prior to mating, due to the absence of attempted copulation in the behavioral repertoire of most types of fru -mutant males. However, certain combinations of fru mutations allow for fertility. By analyzing such matings and their consequences, we uncovered two striking defects: mating times up to four times the normal average duration of copulation; and frequent infertility, regardless of the time of mating by a given transheterozygous fru -mutant male. The lengthened copulation times may be connected with fru -induced defects in the formation of a male-specific abdominal muscle. Production of sperm and certain seminal fluid proteins are normal in these fru mutants. However, analysis of postmating qualities of females that copulated with transheterozygous mutants strongly implied defects in the ability of these males to transfer sperm and seminal fluids. Such abnormalities may be associated with certain serotonergic neurons in the abdominal ganglion in which production of 5HT is regulated by fru. These cells send processes to contractile muscles of the male's internal sex organs; such projection patterns are aberrant in the semifertile fru mutants. Therefore, the reproductive functions regulated by fruitless are expanded in their scope, encompassing not only the earliest stages of courtship behavior along with almost all subsequent steps in the behavioral sequence, but also more than one component of the culminating events. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 121,149, 2001 [source]

    Repeatability of dispersal behaviour in a common dwarf spider: evidence for different mechanisms behind short- and long-distance dispersal

    Abstract 1.,The response of dispersal towards evolution largely depends on its heritability for which upper limits are determined by the trait's repeatability. 2.,In the Linyphiid spider E. atra, we were able to separate long- and short-distance dispersal behaviours (respectively ballooning and rappelling) under laboratory conditions. By performing repeated behavioural trials for females, we show that average dispersal trait values decrease with increasing testing days. By comparing mated and unmated individuals during two periods (before and after mating for the mated group, and the same two periods for the unmated group), we show that mating has no effect on the mean displayed dispersal behaviour or its within-individual variation. Repeatabilities were high and consistent for ballooning motivation, but not for rappelling. 3.,Ballooning motivation can be regarded as highly individual-specific behaviour, while general pre-dispersal and rappelling behaviours showed more individual variation. Such difference in repeatability between long- and short-distance dispersal suggests that short- and long-distance dispersal events are triggered by different ecological and evolutionary mechanisms. [source]