Home About us Contact | |||
Maternal Size (maternal + size)
Selected AbstractsMaternal size and age affect offspring sex ratio in the solitary egg parasitoid Anaphes nitensENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2007Serena Santolamazza-Carbone Abstract In this study, the effects of maternal age, diet, and size on offspring sex ratio were investigated for the solitary egg parasitoid, Anaphes nitens Girault (Hymenoptera: Mymaridae), both outdoors, during the winter, and inside a climatic chamber under favourable constant conditions. During the winter of 2005,2006, each of seven groups containing 40 1-day-old females was mated and randomly distributed among two treatments: (treatment 1) a droplet of undiluted honey ad libitum + one fresh egg capsule of the snout beetle Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae) as host; (treatment 2) drops of water + one fresh egg capsule of G. scutellatus. We recorded the lifetime fecundity, the daily sex allocation, and the lifetime offspring sex ratio to study the existence of a relationship with maternal characteristics. Moreover, we assessed the effect of location (outdoors vs. indoors) and group (groups are representative of early, mid, and late winter) on sex ratio. The most important factor that biased the sex ratio was maternal body size: larger females of both treatments produced more female offspring. As females of A. nitens could gain more advantage than males from body size, larger mothers have a higher fitness return if they produce more daughters. The effect of the treatment was significant: starved females produced more females. Location and group were not significant. Fecundity and sex ratio were age dependent. Old mothers that received honey (treatment 1) had fewer offspring and a more male-biased offspring sex ratio, probably due to reproductive senescence and sperm depletion. Starved females (treatment 2) experienced reproductive decline earlier, perhaps because they invested more energy in maintenance rather than in reproduction. [source] Smaller amphipod mothers show stronger trade-offs between offspring size and numberECOLOGY LETTERS, Issue 2 2000Douglas S. Glazier Trade-offs between embryo mass and number were studied in 10 populations of the freshwater amphipod Gammarus minus. Trade-offs were stronger in populations with small brooding females than in those with larger brooding females. Relationships between embryo mass and maternal body mass were also stronger in populations dominated by small versus large brooding females. These patterns are likely the result of morphological constraints, at least in part. Embryo size is more affected by brood size and maternal size in small mothers, probably because of offspring-packaging constraints associated with small brood pouches. Energy constraints appear to be less important. These results suggest that body size may not only affect the magnitude of individual life-history traits, as is well known, but also the covariance between traits. [source] Phenotypic plasticity of body size at different temperatures in a planktonic rotifer: mechanisms and adaptive significanceFUNCTIONAL ECOLOGY, Issue 6 2002C. P. Stelzer Summary 1Larger body size at low temperatures is a commonly observed phenomenon in ectothermic organisms. The mechanisms that lead to this pattern and its possible adaptive significance were studied in laboratory experiments using the parthenogenetically reproducing rotifer Synchaeta pectinata. 2At low temperatures of 4 °C mean body volume was 46% larger than in individuals cultured at 12 °C. Egg volume was 35% larger in low vs high temperatures. 3Larger body size at low temperatures was caused by two mechanisms. First, when exposed to low temperatures, mothers laid larger eggs and the hatchlings of these eggs developed into larger adults (irrespective of temperature). Second, individuals cultured at low temperatures grew to a larger body size during their juvenile phase. The former mechanism had a greater influence on adult size than the latter. 4The production of larger eggs at low temperatures seemed to be due to a higher reproductive investment into individual offspring as it occurred independently of differences in maternal size. 5Life table experiments showed that offspring from small eggs (produced at high temperatures) had a significantly higher population growth rate than offspring from large eggs, when cultured at high temperatures. This was mainly due to an increase in fertility during the first days of adult life. [source] Mass-dependent reproductive strategies in wild bighorn ewes: a quantitative genetic approachJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2000RÉale In the Ram Mountain bighorn sheep (Ovis canadensis) population, ewes differing by more than 30% in body mass weaned lambs with an average mass difference of only 3%. Variability in adult body mass was partly due to additive genetic effects, but inheritance of weaning mass was weak. Maternal effects could obscure genetic effects in the phenotypic expression of weaning mass, particularly if they reflected strategies of maternal expenditure that varied according to ewe mass. We performed a quantitative genetic analysis to assess genetic and environmental influences on ewe mass and on maternal expenditure. We used the mean daughters/mother regression method and Derivative Free Restricted Maximum Likelihood models to estimate heritability (h2) of ewe mass and indices of maternal expenditure. We found additive genetic effects on phenotypic variation in maternal mass, in lamb mass at weaning (absolute maternal expenditure) and in weaning mass relative to maternal mass at weaning (relative maternal expenditure). Heritability suggests that maternal expenditure has the potential to evolve. The genetic correlation of ewe mass and absolute maternal expenditure was weak, while ewe mass and relative maternal expenditure were strongly negatively correlated. These results suggest additive genetic effects on mass-dependent reproductive strategies in bighorn ewes. Mass-dependent reproductive strategies could affect lamb survival and phenotypic variation in adult mass. As population density increased and reproduction became costlier, small females reduced maternal expenditure more than large females. Constraints on reproductive strategy imposed by variations in resource availability are therefore likely to differ according to ewe mass. A general trend for a decrease in maternal expenditure relative to maternal size in mammals suggests that size-dependent negative maternal effects may be common. [source] Time , size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate floraOIKOS, Issue 3 2008Kjell Bolmgren Parents face a timing problem as to when they should begin devoting resources from their own growth and survival to mating and offspring development. Seed mass and number, as well as maternal survival via plant size, are dependent on time for development. The time available in the favorable season will also affect the size of the developing juveniles and their survival through the unfavorable season. Flowering time may thus represent the outcome of such a time partitioning problem. We analyzed correlations between flowering onset time, seed mass, and plant height in a north-temperate flora, using both cross-species comparisons and phylogenetic comparative methods. Among perennial herbs, flowering onset time was negatively correlated with seed mass (i.e. plants with larger seeds started flowering earlier) while flowering onset time was positively correlated with plant height. Neither of these correlations was found among woody plants. Among annual plants, flowering onset time was positively correlated with seed mass. Cross-species and phylogenetically informed analyses largely agreed, except that flowering onset time was also positively correlated with plant height among annuals in the cross-species analysis. The different signs of the correlations between flowering onset time and seed mass (compar. gee regression coefficient=,7.8) and flowering onset time and plant height (compar. gee regression coefficient=+30.5) for perennial herbs, indicate that the duration of the growth season may underlie a tradeoff between maternal size and offspring size in perennial herbs, and we discuss how the partitioning of the season between parents and offspring may explain the association between early flowering and larger seed mass among these plants. [source] Sex differences in fetal growth responses to maternal height and weightAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 4 2010Michelle lampl Sex differences in fetal growth have been reported, but how this happens remains to be described. It is unknown if fetal growth rates, a reflection of genetic and environmental factors, express sexually dimorphic sensitivity to the mother herself. This analysis investigated homogeneity of male and female growth responses to maternal height and weight. The study sample included 3,495 uncomplicated singleton pregnancies followed longitudinally. Analytic models regressed fetal and neonatal weight on tertiles of maternal height and weight, and modification by sex was investigated (n = 1,814 males, n = 1,681 females) with birth gestational age, maternal parity, and smoking as covariates. Sex modified the effects of maternal height and weight on fetal growth rates and birth weight. Among boys, tallest maternal height influenced fetal weight growth before 18 gestational weeks of age (P = 0.006), and prepregnancy maternal weight and body mass index subsequently had influence (P < 0.001); this was not found among girls. Additionally, interaction terms between sex, maternal height, and maternal weight identified that males were more sensitive to maternal weight among shorter mothers (P = 0.003) and more responsive to maternal height among lighter mothers (P , 0.03), compared to females. Likewise, neonatal birth weight dimorphism varied by maternal phenotype. A male advantage of 60 g occurred among neonates of the shortest and lightest mothers (P = 0.08), compared to 150 and 191 g among short and heavy mothers, and tall and light-weight mothers, respectively (P = 0.01). Sex differences in response to maternal size are under-appreciated sources of variation in fetal growth studies and may reflect differential growth strategies. Am. J. Hum. Biol., 2010. © 2009 Wiley-Liss, Inc. [source] The effect of maternal size on larval characteristics of Persian sturgeon Acipenser persicusAQUACULTURE RESEARCH, Issue 9 2009Rajab Mohammad Nazari Abstract The objective of this work was to study the relationship between female size (weight) and variables of egg and larval stage of Persian sturgeon Acipenser persicus. In this study, 19 female breeders were captured in Caspian Sea and fertilized by routine methods. Positive significant correlations (P<0.05) were established between female weight and ovulated eggs per female, time of second mitosis division and volume of yolk-sac at hatching. There was not significant correlation (r=0.33, P=0.161) between female weight and egg diameter. Female weight was not affected weight of larvae at hatching time (r=0.37, P=0.119), as well as larval length (r=,0.14, P=0.558) and larval weight at the end of the experiment (48 hours after first feeding) (r=0.16, P=0.491). Mortality rate during yolk-sac absorption was higher with increased female weight but their correlation was not significant (r=0.40, P=0.076). During the first feeding stage, mortality rate was 13.39% and there was no significant correlation between mortality rate in this period and female weight (r=,0.12, P=0.613). Conclusively, as a result female size influenced fecundity, time of second mitosis division and yolk-sac volume at hatching time without affecting mortality rate during yolk-sac absorption and first feeding stage in Persian sturgeon. Thus, smaller female broods do not cause more mortality than larger ones in larval production and they can be used in reproduction procedure. [source] |