Maternal mRNAs (maternal + mrna)

Distribution by Scientific Domains


Selected Abstracts


Postplasmic/PEM RNAs: A class of localized maternal mRNAs with multiple roles in cell polarity and development in ascidian embryos

DEVELOPMENTAL DYNAMICS, Issue 7 2007
François Prodon
Abstract Ascidian is a good model to understand the cellular and molecular mechanisms responsible for mRNA localization with the discovery of a large family of localized maternal mRNAs, called postplasmic/PEM RNAs, which includes more than 40 members in three different ascidian species (Halocynthia roretzi, Ciona intestinalis, and C. savignyi). Among these mRNAs, two types (Type I and Type II) have been identified and show two different localization patterns from fertilization to the eight-cell stage. At the eight-cell stage, both types concentrate to a macromolecular cortical structure called CAB (for Centrosome Attracting Body) in the posterior-vegetal B4.1 blastomeres. The CAB is responsible for unequal cleavages and the partitioning of postplasmic/PEM RNAs at the posterior pole of embryos during cleavage stages. It has also been suggested that the CAB region could contain putative germ granules. In this review, we discuss recent data obtained on the distribution of Type I postplasmic/PEM RNAs from oogenesis to late development, in relation to their localization and translational control. We have first regrouped localization patterns for Type I and Type II into a comparative diagram and included all important definitions in the field. We also have made an exhaustive classification of their embryonic expression profiles (Type I or Type II), and analyzed their functions after knockdown and/or overexpression experiments and the role of the 3,-untranslated region (3,UTR) controlling both their localization and translation. Finally, we propose a speculative model integrating recent data, and we also discuss the relationship between postplasmic/PEM RNAs, posterior specification, and germ cell formation in ascidians. Developmental Dynamics 236:1698,1715, 2007. © 2007 Wiley-Liss, Inc. [source]


Use of combined in silico expression data and phylogenetic analysis to identify new oocyte genes encoding RNA binding proteins in the mouse

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 12 2008
Laurence Drouilhet
Abstract During folliculogenesis, oocytes accumulate maternal mRNAs in preparation for the first steps of early embryogenesis. The processing of oocyte mRNAs is ensured by heterogeneous nuclear ribonucleoproteins (hnRNPs) genes that encode RNA binding proteins implied in mRNA biogenesis, translation, alternative splicing, nuclear exportation, and degradation. In the present work, by combining phylogenetic analyses and, when available, in silico expression data, we have identified three new oocyte-expressed genes encoding RNA binding proteins by using two strategies. Firstly, we have identified mouse orthologs of the Car1 gene, known to be involved in regulation of germ cell apoptosis in C. elegans, and of the Squid gene, required for the establishment of anteroposterior polarity in the Drosophila oocyte. Secondly, we have identified, among genes whose ESTs are highly represented in oocyte libraries, a paralog of Poly(A) binding protein,Interacting Protein 2 (Paip2) gene, known to inhibit the interaction of the Poly(A)-Binding Protein with Poly(A) tails of mRNAs. For all of these genes, the expression in oocyte was verified by in situ hybridization. Overall, this work underlines the efficiency of in silico methodologies to identify new genes involved in biological processes such as oogenesis. Mol. Reprod. Dev. 75: 1691,1700, 2008. © 2008 Wiley-Liss, Inc. [source]


Porcine CPEB1 is involved in Cyclin B translation and meiotic resumption in porcine oocytes

ANIMAL SCIENCE JOURNAL, Issue 4 2010
Yukio NISHIMURA
ABSTRACT Ovarian immature oocytes accumulate many dormant maternal mRNAs, which have short poly(A) tails. Cytoplasmic-polyadenylation-element binding protein (CPEB) has been reported to play key roles for the elongation of the tails and the translation of these mRNAs in Xenopus oocytes. However, the functions of CPEB in meiotic resumption have not yet been established in mammalian oocytes. The present study examined the roles of porcine CPEB in Cyclin B syntheses and meiotic resumption of porcine oocytes. Porcine CPEB1 (pCPEB1) cDNA was cloned from total RNA of immature oocytes by RT-PCR. The overexpression of pCPEB1 by mRNA injection into immature oocytes increased Cyclin B expression and the rate of meiotic resumption. Conversely, the inhibition of endogenous CPEB by expression of a dominant-negative mutant pCPEB1 (AA-CPEB), which replaced the expected phosphorylation sites with alanines, had the effect of inhibiting Cyclin B synthesis, ribosomal S6 kinase phosphorylation (an indicator of Mos activity), and meiotic resumption. The inhibition of porcine Aurora A by an injection of antisense RNA enhanced the inhibitory effects of AA-CPEB. These results suggest the involvement of mammalian CPEB1 in Cyclin B syntheses and meiotic resumption in mammalian oocytes. In addition, the phosphorylation sites of pCPEB1 were identified and are suggested to be phosphorylated by porcine Aurora A. [source]