Home About us Contact | |||
Mate Quality (mate + quality)
Selected AbstractsThe evolution of male mate choice in insects: a synthesis of ideas and evidenceBIOLOGICAL REVIEWS, Issue 3 2001RUSSELL BONDURIANSKY ABSTRACT Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating p to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to ,precopulatory' male mate choice, some insects exhibit ,cryptic' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating p are those that tend to maximize a male's expected fertilization success from each mating. Such p tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform (,mating investment'). Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating p have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associated with elevated levels of male parental investment, reduced male reproductive rates, or reduced male bias in the operational sex ratio. Instead, large female mate quality variance resulting from factors such as strong last-male sperm precedence or large variance in female fecundity may select for both male choosiness and competitiveness in such systems. Thus, partial and complete sex role reversal do not merely represent different points along a continuum of increasing male parental investment, but may evolve via different evolutionary pathways. [source] Does female nuptial coloration reflect egg carotenoids and clutch quality in the Two-Spotted Goby (Gobiusculus flavescens, Gobiidae)?FUNCTIONAL ECOLOGY, Issue 4 2006P. A. SVENSSON Summary 1Carotenoid-based ornamentation has often been suggested to signal mate quality, and species with such ornaments have frequently been used in studies of sexual selection. 2Female Gobiusculus flavescens (Two-Spotted Goby) develop colourful orange bellies during the breeding season. Belly coloration varies among mature females, and previous work has shown that nest-holding males prefer females with more colourful bellies. Because males invest heavily in offspring during incubation, the evolution of this preference can be explained if colourful females provide males with eggs of higher quality. 3We tested this hypothesis by allowing males to spawn with ,colourful' and ,drab' females and comparing parameters including egg carotenoid concentration, clutch size, hatchability and larval viability between groups. We also investigated relationships between egg carotenoid concentration and clutch quality parameters. 4Eggs from colourful females had significantly higher concentrations of total carotenoids than drab females, and photographically quantified belly coloration was a good predictor of egg carotenoid concentration. 5Colourful females produced slightly larger clutches, but female belly coloration was not related to any measure of clutch quality. In addition, there were no significant relationships between egg carotenoids and clutch quality. Females with high levels of egg carotenoids spawned slightly earlier, however, possibly because they were more ready to spawn or because of male mate choice. 6Our results call into question the generality of a causal link between egg carotenoids and offspring quality. [source] The use of multiple cues in mate choiceBIOLOGICAL REVIEWS, Issue 4 2003ULRIKA CANDOLIN ABSTRACT An increasing number of studies find females to base their mate choice on several cues. Why this occurs is debated and many different hypotheses have been proposed. Here I review the hypotheses and the evidence in favour of them. At the same time I provide a new categorisation based on the adaptiveness of the preferences and the information content of the cues. A few comparative and empirical studies suggest that most multiple cues are Fisherian attractiveness cues or uninformative cues that occur alongside a viability indicator and facilitate detection, improve signal reception, or are remnants from past selection pressures. However, much evidence exists for multiple cues providing additional information and serving as multiple messages that either indicate general mate quality or enable females that differ in mate preferences to choose the most suitable male. Less evidence exists for multiple cues serving as back-up signals. The importance of receiver psychology, multiple sensory environments and signal interaction in the evolution of multiple cues and preferences has received surprisingly little attention but may be of crucial importance. Similarly, sexual conflict has been proposed to result in maladaptive preferences for manipulative cues, and in neutral preferences for threshold cues, but no reliable evidence exists so far. An important factor in the evolution of multiple preferences is the cost of using additional cues. Most theoretical work assumes that the cost of choice increases with the number of cues used, which restricts the conditions under which preferences for multiple cues are expected to evolve. I suggest that in contrast to this expectation, the use of multiple cues can reduce mate choice costs by decreasing the number of mates inspected more closely or the time and energy spent inspecting a set of mates. This may be one explanation for why multiple cues are more common than usually expected. Finally I discuss the consequences that the use of multiple cues may have for the process of sexual selection, the maintenance of genetic variation, and speciation. [source] The evolution of male mate choice in insects: a synthesis of ideas and evidenceBIOLOGICAL REVIEWS, Issue 3 2001RUSSELL BONDURIANSKY ABSTRACT Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating p to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to ,precopulatory' male mate choice, some insects exhibit ,cryptic' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating p are those that tend to maximize a male's expected fertilization success from each mating. Such p tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform (,mating investment'). Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating p have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associated with elevated levels of male parental investment, reduced male reproductive rates, or reduced male bias in the operational sex ratio. Instead, large female mate quality variance resulting from factors such as strong last-male sperm precedence or large variance in female fecundity may select for both male choosiness and competitiveness in such systems. Thus, partial and complete sex role reversal do not merely represent different points along a continuum of increasing male parental investment, but may evolve via different evolutionary pathways. [source] |