Mass-transfer Coefficient (mass-transfer + coefficient)

Distribution by Scientific Domains


Selected Abstracts


Analytical Model for Removal of a Uniformly Distributed Single-Component NAPL Under Nonequilibrium Conditions

GROUND WATER MONITORING & REMEDIATION, Issue 3 2001
H.J.H. Brouwers
In this paper a simple analytical model is presented for the one-dimensional transport equation describing the removal of a uniformly distributed, single-component NAPL under nonequilibrium conditions. Both advective and dispersive transport are included in the model. The model describes two distinct stages: a solution for the time the amount of NAPL declines but the length of the NAPL-containing region remains constant, and a solution from the moment the front, behind which all NAPL is depleted, starts to move. The model is valid for both dissolution (i.e., by water) or volatilization (i.e., by air). Dissolution (or volatilization) is considered a firstorder rate process with a constant mass-transfer rate coefficient. As expected, the model approaches the solution for equilibrium conditions if the mass-transfer coefficient tends to infinity. Even though the model is based on some rigorous assumptions, the simplicity of the model makes it useful for obtaining an initial mass-transfer rate coefficient from experimental data, which can be used to estimate the time required to dissolve all NAPL, as shown for two data sets taken from the literature. [source]


Two-scale continuum model for simulation of wormholes in carbonate acidization

AICHE JOURNAL, Issue 12 2005
Mohan K. R. Panga
Abstract A two-scale continuum model is developed to describe transport and reaction mechanisms in reactive dissolution of a porous medium, and used to study wormhole formation during acid stimulation of carbonate cores. The model accounts for pore level physics by coupling local pore-scale phenomena to macroscopic variables (Darcy velocity, pressure and reactant cup-mixing concentration) through structure-property relationships (permeability-porosity, average pore size-porosity, and so on), and the dependence of mass transfer and dispersion coefficients on evolving pore scale variables (average pore size and local Reynolds and Schmidt numbers). The gradients in concentration at the pore level caused by flow, species diffusion and chemical reaction are described using two concentration variables and a local mass-transfer coefficient. Numerical simulations of the model on a two-dimensional (2-D) domain show that the model captures the different types of dissolution patterns observed in the experiments. A qualitative criterion for wormhole formation is developed and it is given by , , O(1), where , = . Here, keff is the effective volumetric dissolution rate constant, DeT is the transverse dispersion coefficient, and uo is the injection velocity. The model is used to examine the influence of the level of dispersion, the heterogeneities present in the core, reaction kinetics and mass transfer on wormhole formation. The model predictions are favorably compared to laboratory data. © 2005 American Institute of Chemical Engineers AIChE J, 2005 [source]


A ceramic microfiltration tube membrane dispersion extractor

AICHE JOURNAL, Issue 2 2004
G. G. Chen
Abstract Although the phase-free membrane extraction process has shown many advantages over the traditional extraction, the process is still at the experimental stage. On the other hand, in a new extractor a microfiltration membrane is used as a dispersion medium. The mass-transfer performance of the new extractor was tested with 30% TBP (in kerosene),nitric acid,H2O as an experimental system. The overall mass-transfer coefficient and the equipment efficiency were calculated with the concentrations of the inlet and outlet. The extractor was designed and constructed with two special inner elements for improving the performance further. The effects of the transmembrane pressure, the continuous-phase flow rate, and the geometric parameters of the inner elements on the mass-transfer performance, as well as on the flux of the dispersion phase, are discussed. The experimental results showed that very higher efficiency was reached. The inner elements could improve the mass-transfer performance greatly by changing the two-phase contact status. The results suggested that the mass-transfer process could be completed quickly while the drop size was in the range of micrometers. In addition, the flux of the dispersed phase was mainly influenced by the transmembrane pressure, not by the equipment structures, inner elements, and the continuous-phase flow rate. The new extractor can be operated with very higher efficiency and higher flux, and the efficiency can be predicted with a cubic polynomial. © 2004 American Institute of Chemical Engineers AIChE J, 50: 382,387, 2004 [source]


Mass transport and flow regimes in centrifugal partition chromatography

AICHE JOURNAL, Issue 8 2002
L. Marchal
Centrifugal partition chromatography (CPC) is a support-free liquid,liquid separation process that depends for efficiency on the behavior of the two liquid phases. Hydrodynamics of phases was studied according to flow rate and centrifugal acceleration, using a transparent column and a stroboscopic video system. For the heptane-methanol two-phase system, three main flow regimes,stuck film, oscillating sheet, and atomization,are observed, highlighting the coriolis acceleration effect as well as the influence of the column shape. Mass transport in the CPC column is modeled by a plug flow with axial dispersion and mass transfer with a stagnant volume. Model parameters (residence time, Péclet number, partition ratio, and mass-transfer coefficient) are fitted on solute residence-time distribution. Off-column dispersion is an important source of peak broadening in CPC, whereas its irregular geometry provides a plug flow for mobile phase. Importance of flow pattern on mass transfer is demonstrated. CPC interest for preparative applications is confirmed. [source]


Dynamics of Interfacial Mass Transfer in a Gas-Dispersed System

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
Katsumi Tsuchiya
Abstract Dynamics of mass transfer across gas,liquid interface in a gas-dispersed system are examined via high-sensitivity, high-speed imaging. The dispersive dynamics of the dissolved component, CO2, into the liquid phase are visualized using laser-induced fluorescence (LIF) with pH-sensitive pyrene (HPTS) for both a single- and multi-bubble systems. The fluctuating dynamics of the bubble surface are characterized by capillary waves associated with the bubble motion. Enhancement of the mass transfer is found to be associated with the (nonlinear) wave formation, influence of which could be included in modeling the mass-transfer coefficient, apart from an physical account of the near-surface concentration gradient. La dynamique du transfert de matière à l'interface gaz-liquide dans un système dispersé par le gaz a été étudiée par des techniques d'imagerie à haute sensibilité et à haute vitesse. La dynamique de dispersion du composant dissous, le CO2, dans la phase liquide a été visualisée par fluorescence induite par laser (LIF) avec du pyrène sensible au pH (HPTS) pour des systèmes à bulles uniques et multiples. La dynamique de la fluctuation de la surface des bulles a été caractérisée par des ondes capillaires associées au déplacement des bulles. On a trouvé que l'amélioration du transfert de matière s'accompagnait d'une formation de vagues (non linéaires); l'influence de ces vagues pourrait être incluse dans la modélisation du coefficient de transfert de matière, en plus de la prise en compte physique du gradient de concentration près de la surface. [source]


Remobilization of Polychlorinated Biphenyl from Baltic Sea Sediment: Comparing the Roles of Bioturbation and Physical Resuspension

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2009
Jenny E. Hedman
Abstract The release of a 14C-labeled trichlorobiphenyl compound ([14C]PCB 32) from sediment to water was quantified weekly in a 30-d microcosm experiment with recirculating water. Two modes of bioturbation-driven polychlorinated biphenyl (PCB) release,bioturbation by the amphipod Monoporeia affinis (a particle biodiffuser) and bioturbation by the polychaete Marenzelleria sp. (a bioirrigator),were compared to the PCB release caused by physical resuspension of the sediment generated by a motor-driven paddle used twice a week. Bioturbation by the amphipod M. affinis caused a significantly higher remobilization of both particle-associated PCB (PCBpart) and dissolved PCB (PCBdiss) than the other treatments. Bioturbation by Marenzelleria sp. and physical resuspension caused a similar release of PCBdiss despite a significantly higher amount of total suspended solids in the water column after physical resuspension. In all treatments, the release of PCBdiss was more than one order of magnitude higher than that of PCBpart, indicating a significant potential route of exposure for pelagic organisms, such as fish, to the most bioavailable PCB form. Calculated mass-transfer coefficients (0.3,1.3 cm/d) correspond to previously reported values for trichlorinated PCBs. The present results indicate that biological reworking of sediments can be just as, or even more, important than physical resuspension for the remobilization of sediment-bound contaminants. [source]


Effect of Taylor vortices on mass transfer from a rotating cylinder

AICHE JOURNAL, Issue 11 2005
R. Srinivasan
Abstract Mass transfer from solids, which has important applications in a number of chemical and pharmaceutical industries, has been studied experimentally and semiempirically under turbulent flow conditions, and correlations are available in the literature to calculate the mass-transfer coefficients from pellets, rotating cylinders and disks etc. However, mass transfer under laminar flow has not been sufficiently addressed. One of the difficulties here is the strong Reynolds number dependence of the flow pattern, for example, due to the onset of Taylor vortices for the case of a rotating cylinder. This problem is circumvented by using a computational fluid dynamics (CFD)-based solution of the governing equations for the case of a cylinder rotating inside a stationary cylindrical outer vessel filled with liquid. The parameters cover a range of Reynolds number (based on the cylinder diameter, and the tangential speed of the cylinder), Schmidt number and the ratio of the outer to inner cylinder diameters. The results confirm that the circumferential velocity profile is a strong function of the Reynolds number and varies from a nearly Couette-type flow at very low Reynolds numbers to a boundary layer-like profile at high Reynolds numbers. The onset of Taylor vortices has a strong effect on the flow field and the mass-transfer mode. The calculations show that the Sherwood number has a linear dependence on the Reynolds number in the Couette-flow regime, and roughly square-root dependence after the onset of Taylor vortices. Correlations have been proposed to calculate the Sherwood number taking account of these effects. © 2005 American Institute of Chemical Engineers AIChE J, 2005 [source]


Rate-based nonisothermal LLX model and its experimental validation

AICHE JOURNAL, Issue 2 2004
Debjit Sanpui
Abstract Most of the current open literature handles liquid,liquid extraction (LLX) using equilibrium and/or isothermal models. However, in most industrial applications, the assumption of equilibrium and isothermal operation is not reasonable. A rate-based nonequilibrium model for both the mass and energy transfer in LLX during the three distinct stages of drop formation,drop, fall or rise, and drop coalescence,has been developed. These three hydrodynamic phenomena affect the mass transfer between dispersed and continuous phases for which a parallel,parallel mass-transfer resistance model has been incorporated. Because of the very large number of computations associated with repeated calculations of mass-transfer coefficients a local model has been proposed. We have compared our rate-based simulator with two other commercial simulators and our bench-scale experiments have been done for toluene,acetone,water and methyl isobutyl ketone,acetic acid,water systems. Stagewise mass and energy transfer and the hydrodynamics features have been compared between the experimental and the simulation runs. Relative-error square analysis (for the concentration profiles) shows that our simulation results are two orders of magnitude better in comparison to other commercial simulators. © 2004 American Institute of Chemical Engineers AIChE J, 50: 368,381, 2004 [source]