Mass-to-charge Ratio (mass-to-charge + ratio)

Distribution by Scientific Domains


Selected Abstracts


Capillary electrophoresis of amphipathic ,-helical peptide diastereomers

ELECTROPHORESIS, Issue 1 2004
Traian V. Popa
Abstract We have made a rigorous assessment of the ability of capillary electrophoresis to resolve peptide diastereomers through its application to the separation of a series of synthetic 18-residue, amphipathic ,-helical monomeric peptide analogues, where a single site in the centre of the hydrophobic face of the ,-helix is substituted by 19 L - or D -amino acids. Such L - and D -peptide pairs have the same mass-to-charge ratio, amino acid sequence and intrinsic hydrophobicity, varying only in the stereochemistry of one residue. CE approaches assessed in their ability to separate diastereomeric peptide pairs included capillary zone electrophoresis (uncoated capillary), micellar electrokinetic chromatography (uncoated capillary in the presence of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, CHAPS), open-tubular capillary electrochromatography (C8 -coated capillary in the presence of 25% 2,2,2-trifluoroethanol (TFE) or 25% ethanol). Overall, the OT-CEC methods were the most effective at separating the most peptide pairs, particularly for those containing hydrophilic side chains. However, the MEKC approach proved most effective for separation of peptide pairs containing hydrophobic or aromatic side chains. [source]


MassBank: a public repository for sharing mass spectral data for life sciences

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 7 2010
Hisayuki Horai
Abstract MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database contains 605 electron-ionization mass spectrometry(EI-MS), 137 fast atom bombardment MS and 9276 electrospray ionization (ESI)-MSn data of 2337 authentic compounds of metabolites, 11 545 EI-MS and 834 other-MS data of 10 286 volatile natural and synthetic compounds, and 3045 ESI-MS2 data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI-MS2 data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine correlation in which weighting exponents on peak intensity and the mass-to-charge ratio are optimized to the ESI-MS2 data. MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI-MS2 data on an identical compound under different collision-induced dissociation conditions. Data merging has significantly improved the precision of the identification of a chemical compound by 21,23% at a similarity score of 0.6. Thus, MassBank is useful for the identification of chemical compounds and the publication of experimental data. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Rapid simultaneous determination of codeine and morphine in plasma using LC-ESI-MS/MS: Application to a clinical pharmacokinetic study

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 2 2009
Qiongfeng Liao
Abstract A rapid and sensitive high-performance LC-MS/MS method was developed and validated for the simultaneous quantification of codeine and its metabolite morphine in human plasma using donepezil as an internal standard (IS). Following a single liquid-liquid extraction with ethyl acetate, the analytes were separated using an isocratic mobile phase on a C18 column and analyzed by MS/MS in the selected reaction monitoring mode using the respective [M+H]+ ions, mass-to-charge ratio (m/z) 300/165 for codeine, m/z 286/165 for morphine and m/z 380/91 for IS. The method exhibited a linear dynamic range of 0.2,100/0.5,250 ng/mL for codeine/morphine in human plasma, respectively. The lower LOQs were 0.2 and 0.5 ng/mL for codeine and its metabolite morphine using 0.5 mL of human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated LC-MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 30 mg codeine phosphate. [source]


Development and validation of a ultra performance LC-ESI/MS method for analysis of metabolic phenotypes of healthy men in day and night urine samples

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 16-17 2008
Xijun Wang
Abstract Ultra-performance LC coupled to quadrupole TOF/MS (UPLC-QTOF/MS) in positive and negative ESI was developed and validated to analyze metabolite profiles for urine from healthy men during the day and at night. Data analysis using principal components analysis (PCA) revealed differences between metabolic phenotypes of urine in healthy men during the day and at night. Positive ions with mass-to-charge ratio (m/z) 310.24 (5.35 min), 286.24 (4.74 min) and 310.24 (5.63 min) were elevated in the urine from healthy men at night compared to that during the day. Negative ions elevated in day urine samples of healthy men included m/z 167.02 (0.66 min), 263.12 (2.55 min) and 191.03 (0.73 min), whilst ions m/z 212.01 (4.77 min) were at a lower concentration in urine of healthy men during the day compared to that at night. The ions m/z 212.01 (4.77 min), 191.03 (0.73 min) and 310.24 (5.35 min) preliminarily correspond to indoxyl sulfate, citric acid and N -acetylneuraminic acid, providing further support for an involvement of phenotypic difference in urine of healthy men in day and night samples, which may be associated with notably different activities of gut microbiota, velocity of tricarboxylic acid cycle and activity of sialic acid biosynthesis in healthy men as regulated by circadian rhythm of the mammalian bioclock. [source]


Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 24 2008
Jan Kaiser
Gas isotope ratio mass spectrometers usually measure ion current ratios of molecules, not atoms. Often several isotopologues contribute to an ion current at a particular mass-to-charge ratio (m/z). Therefore, corrections have to be applied to derive the desired isotope ratios. These corrections are usually formulated in terms of isotope ratios (R), but this does not reflect the practice of measuring the ion current ratios of the sample relative to those of a reference material. Correspondingly, the relative ion current ratio differences (expressed as , values) are first converted into isotopologue ratios, then into isotope ratios and finally back into elemental , values. Here, we present a reformulation of this data reduction procedure entirely in terms of , values and the ,absolute' isotope ratios of the reference material. This also shows that not the absolute isotope ratios of the reference material themselves, but only product and ratio combinations of them, are required for the data reduction. These combinations can be and, for carbon and oxygen have been, measured by conventional isotope ratio mass spectrometers. The frequently implied use of absolute isotope ratios measured by specially calibrated instruments is actually unnecessary. Following related work on CO2, we here derive data reduction equations for the species O2, CO, N2O and SO2. We also suggest experiments to measure the required absolute ratio combinations for N2O, SO2 and O2. As a prelude, we summarise historic and recent measurements of absolute isotope ratios in international isotope reference materials. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Quantitatively resolving mixtures of isobaric compounds using chemical ionization mass spectrometry by modulating the reactant ion composition

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 16 2008
E. C. Fortner
Acrolein (C3H4O) and 1-butene (C4H8) can both be individually detected by proton transfer chemical ionization mass spectrometry (CI-MS). However, because these compounds are isobaric, mixtures of these two compounds cannot be resolved since both compounds react with H3O+ via a proton-transfer reaction to form a protonated molecule that is detected at a nominal mass-to-charge ratio of 57 (m/z 57). While both compounds react with H3O+ only acrolein reacts to any significant extent with H3O+(H2O). Recognizing that the electrical potential applied to a drift tube reaction mass spectrometer provides a simple and effective means for varying the relative intensity of the H3O+ and H3O+(H2O) reactant ions we have developed a method whereby we make use of this reactivity difference to resolve mixtures of these two compounds. We demonstrate a technique where the individual contributions of acrolein and 1-butene within a mixture can be quantitatively resolved by systematically changing the reagent ion from H3O+ to H3O+(H2O) through control of the electric potential applied to the drift tube reaction region of a proton transfer reaction mass spectrometer. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Identification of endo- and exo-polygalacturonase activity in Lygus hesperus (Knight) salivary glands,

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2009
Maria de la Paz Celorio-Mancera
Abstract Polygalacturonase (PG) activity found in the salivary gland apparatus of the western tarnished plant bug (WTPB, Lygus hesperus Knight) has been thought to be the main chemical cause of the damage inflicted by this mirid when feeding on its plant hosts. Early viscosity and thermal stability studies of the PG activity in L. hesperus protein extracts were difficult to interpret. Thus, it has been suggested that one or more PG protein(s) with different hydrolytic modes of action are produced by this mirid. In order to understand the quantitative complexity of the WTPB salivary PG activity, PG purification from a protein extract from salivary glands excised from L. hesperus insects was performed using affinity and ion exchange chromatography. To elucidate the qualitative complexity of the purified PGs, the digestion products generated by the PGs were separated using high performance anion exchange chromatography with pulsed amperometric detection. At least five PG proteins were detected; these differing in terms of their glycosylation, mass-to-charge ratios, and/or molecular mass. The characterization of the products generated by these PGs showed that endo- and exo-acting PGs are produced by WTPB. Although none of the PGs was purified to homogeneity, the present work provides biochemical evidence of a multiplicity of PGs that degrade the pectin component of the plant tissue in different fashions. The implications of these findings affect the understanding of WTPB feeding damage and, potentially, help identify ways to control this important crop pest. Arch. Insect Biochem. Physiol. 2008. © 2008 Wiley-Liss, Inc. [source]