Home About us Contact | |||
Massive Black Holes (massive + black_hole)
Selected AbstractsKinematics of hypervelocity stars in the triaxial halo of the Milky WayMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007Qingjuan Yu ABSTRACT Hypervelocity stars (HVSs) ejected by the massive black hole at the Galactic Centre have unique kinematic properties compared to other halo stars. Their trajectories will deviate from being exactly radial because of the asymmetry of the Milky Way potential produced by the flattened disc and the triaxial dark matter halo, causing a change of angular momentum that can be much larger than the initial small value at injection. We study the kinematics of HVSs and propose an estimator of dark halo triaxiality that is determined only by instantaneous position and velocity vectors of HVSs at large Galactocentric distances (r, 50 kpc). We show that, in the case of a substantially triaxial halo, the distribution of deflection angles (the angle between the stellar position and velocity vector) for HVSs on bound orbits is spread uniformly over the range 10°,180°. Future astrometric and deep wide-field surveys should measure the positions and velocities of a significant number of HVSs, and provide useful constraints on the shape of the Galactic dark matter halo. [source] A search for the third lensed image in JVAS B1030+074MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007M. Zhang ABSTRACT Central gravitational image detection is very important for the study of the mass distribution of the inner parts (,100 pc) of lens galaxies. However, the detection of such images is extremely rare and difficult. We present a 1.7-GHz High Sensitivity Array (HSA) observation of the double-image radio lens system B1030+074. The data are combined with archive Very Long Baseline Array and global very long baseline interferometry (VLBI) observations, and careful consideration is given to the effects of noise, cleaning and self-calibration. An upper limit is derived for the strength of the central image of 180 ,Jy (90 per cent confidence level), considerably greater than would have been expected on the basis of a simple analysis. This gives a lower limit of ,103 for the ratio of the brightest image to the central image. For cusped models of lens mass distributions, we have made use of this non-detection to constrain the relation between inner power-law slope , of the lensing galaxy mass profile, and its break radius rb. For rb > 130 pc the power-law slope is required to be close to isothermal (, > 1.8). A flatter inner slope is allowed if a massive black hole is present at the centre of the lensing galaxy, but the effect of the black hole is small unless it is ,10 times more massive than that implied by the relation between black hole mass and stellar velocity dispersion. By comparing four epochs of VLBI observations, we also detected possible superluminal motion in the jet in the brighter image A. The B jet remains unresolved, as expected from a simple lens model of the system. [source] A New X-Ray Flare from the Galactic Nucleus Detected with XMM-NewtonASTRONOMISCHE NACHRICHTEN, Issue S1 2003A. Goldwurm Abstract The compact radio source Sgr A*, believed to be the counterpart of the massive black hole at the Galactic nucleus, was observed to undergo rapid and intense flaring activity in X-rays with Chandra in October 2000. We report here the detection with XMM-Newton EPIC cameras of the early phase of a similar X-ray flare from this source, which occurred on 2001 September 4. The source 2,10 keV luminosity increased by a factor ,20 to reach a level of 4 1034 erg s,1 in a time interval of about 900 s, just before the end of the observation. The data indicate that the source spectrum was hard during the flare and can be described by simple power law of slope ,0.7. This XMM-Newton observation confirms the results obtained by Chandra, suggests that, in Sgr A* , rapid and intense X-ray flaring is not a rare event and therefore sets some constraints on the emission mechanism models proposed for this source. [source] A hybrid N -body code incorporating algorithmic regularization and post-Newtonian forcesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008S. Harfst ABSTRACT We describe a novel N -body code designed for simulations of the central regions of galaxies containing massive black holes. The code incorporates Mikkola's ,algorithmic' chain regularization scheme including post-Newtonian terms up to PN2.5 order. Stars moving beyond the chain are advanced using a fourth-order integrator with forces computed on a GRAPE board. Performance tests confirm that the hybrid code achieves better energy conservation, in less elapsed time, than the standard scheme and that it reproduces the orbits of stars tightly bound to the black hole with high precision. The hybrid code is applied to two sample problems: the effect of finite- N gravitational fluctuations on the orbits of the S-stars, and inspiral of an intermediate-mass black hole into the Galactic Centre. [source] Black hole growth in hierarchical galaxy formationMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007Rowena K. Malbon ABSTRACT We incorporate a model for black hole growth during galaxy mergers into the semi-analytical galaxy formation model based on ,CDM proposed by Baugh et al. Our black hole model has one free parameter, which we set by matching the observed zero-point of the local correlation between black hole mass and bulge luminosity. We present predictions for the evolution with redshift of the relationships between black hole mass and bulge properties. Our simulations reproduce the evolution of the optical luminosity function of quasars. We study the demographics of the black hole population and address the issue of how black holes acquire their mass. We find that the direct accretion of cold gas during starbursts is an important growth mechanism for lower mass black holes and at high redshift. On the other hand, the re-assembly of pre-existing black hole mass into larger units via merging dominates the growth of more massive black holes at low redshift. This prediction could be tested by future gravitational wave experiments. As redshift decreases, progressively less massive black holes have the highest fractional growth rates, in line with recent claims of ,downsizing' in quasar activity. [source] The distribution and kinematics of early high-, peaks in present-day haloes: implications for rare objects and old stellar populationsMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005Jürg Diemand ABSTRACT We show that the hierarchical assembly of cold dark matter haloes preserves the memory of the initial conditions. Using N -body cosmological simulations, we demonstrate that the present-day spatial distribution and kinematics of objects that formed within early(z, 10) protogalactic systems (old stars, satellite galaxies, globular clusters, massive black holes, etc.) depends mostly on the rarity of the peak of the primordial density field to which they originally belonged. Only for objects forming at lower redshifts does the exact formation site within the progenitor halo (e.g. whether near the centre or in an extended disc) become important. In present-day haloes, material from the rarer early peaks is more centrally concentrated and falls off more steeply with radius compared to the overall mass distribution, has a lower velocity dispersion, moves on more radial orbits, and has a more elongated shape. Population II stars that formed within protogalactic haloes collapsing from ,2.5, fluctuations would follow today an r,3.5 density profile with a half-light radius of 17 kpc and a velocity anisotropy that increases from isotropic in the inner regions to nearly radial at the halo edge. This agrees well with the radial velocity dispersion profile of Galaxy halo stars from the recent work of Battaglia et al. and with the anisotropic orbits of nearby halo stars. [source] An upper limit to the central density of dark matter haloes from consistency with the presence of massive central black holesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2010X. Hernandez ABSTRACT We study the growth rates of massive black holes in the centres of galaxies from accretion of dark matter from their surrounding haloes. By considering only the accretion due to dark matter particles on orbits unbound to the central black hole, we obtain a firm lower limit to the resulting accretion rate. We find that a runaway accretion regime occurs on a time-scale which depends on the three characteristic parameters of the problem: the initial mass of the black hole, the volume density and velocity dispersion of the dark matter particles in its vicinity. An analytical treatment of the accretion rate yields results implying that, for the largest black hole masses inferred from quasi-stellar object (QSO) studies (>109 M,), the runaway regime would be reached on time-scales which are shorter than the lifetimes of the haloes in question for central dark matter densities in excess of 250 M, pc,3. Since reaching runaway accretion would strongly distort the host dark matter halo, the inferences of QSO black holes in this mass range lead to an upper limit on the central dark matter densities of their host haloes of ,0 < 250 M, pc,3. This limit scales inversely with the assumed central black hole mass. However, thinking of dark matter profiles as universal across galactic populations, as cosmological studies imply, we obtain a firm upper limit for the central density of dark matter in such structures. [source] Radio bimodality: Spin, accretion mode, or both?ASTRONOMISCHE NACHRICHTEN, Issue 2-3 2009M. Sikora Abstract A new scenario is suggested to explain a large diversity of the AGN radio properties and their dependence on the galaxy morphology. The scenario is based on the assumption that the growth of supermassive BHs is dominated by the accretion only during the quasar (high accretion rate) phase, otherwise , by mergers with less massive black holes. Following that, BHs are expected to spin much faster in giant ellipticals than in disk galaxies. Within the frame of the spin paradigm this explains the observed relation of the radio-dichotomy with the galaxy morphology. Various theoretical and observational aspects of such a dichotomy are discussed. In particular, the issue of the intermittency and suppression of a jet production at high accretion rates is addressed and a scenario for production of powerful, extended radio sources is drafted (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |