Home About us Contact | |||
Mass Transport (mass + transport)
Terms modified by Mass Transport Selected AbstractsNucleation-Governed Reversible Self-Assembly of an Organic Semiconductor at Surfaces: Long-Range Mass Transport Forming Giant Functional Fibers,ADVANCED FUNCTIONAL MATERIALS, Issue 18 2007G. De, Luca Abstract The use of solvent-vapor annealing (SVA) to form millimeter-long crystalline fibers, having a sub-micrometer cross section, on various solid substrates is described. Thin films of a perylene-bis(dicarboximide) (PDI) derivative, with branched alkyl chains, prepared from solution exhibit hundreds of nanometer-sized PDI needles. Upon exposure to the vapors of a chosen solvent, tetrahydrofuran (THF), the needles re-organize into long fibers that have a remarkably high aspect ratio, exceeding 103. Time- and space-resolved mapping with optical microscopy allows the self-assembly mechanism to be unravelled; the mechanism is found to be a nucleation-governed growth, which complies with an Avrami-type of mechanism. SVA is found to lead to self-assembly featuring i),long-range order (up to the millimeter scale), ii),reversible characteristics, as demonstrated through a series of assembly and disassembly steps, obtained by cycling between THF and CHCl3 as solvents, iii),remarkably high mass transport because the PDI molecular motion is found to occur at least over hundreds of micrometers. Such a detailed understanding of the growth process is fundamental to control the formation of self-assembled architectures with pre-programmed structures and physical properties. The versatility of the SVA approach is proved by its successful application using different substrates and solvents. Kelvin probe force microscopy reveals that the highly regular and thermodynamically stable fibers of PDI obtained by SVA exhibit a greater electron-accepting character than the smaller needles of the drop-cast films. The giant fibers can be grown in,situ in the gap between microscopic electrodes supported on SiOx, paving the way towards the application of SVA in micro- and nanoelectronics. [source] Rapid Mass Transport in Mixed Matrix Nanotube/Polymer Membranes,ADVANCED MATERIALS, Issue 18 2007A. Gusev The permeability performance of mixed matrix carbon-nanotube/polymer membranes (see figure) is estimated by using the finite element method. The universal approximation of perfectly permeable nanotubes appears appropriate for predicting the overall rates of single gas solute transport. Based on direct finite element predictions, a set of simple design equations demonstrate that nanotube/polymer membranes can favorably combine the high-flux performance of nanotubes with the intrinsic selectivity of a polymer matrix. [source] Mass Transport Through PDMS/Clay Nanocomposite MembranesTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2007Quan Liu Abstract Poly(dimethylsiloxane)/clay nanocomposite membranes have been synthesized and mass transport properties through those nanocomposite membranes have been investigated. The effect of mechanical deformation on the transport properties of the PDMS (nanocomposite) membranes has also been studied. With the introduction of clay particles into the polymer matrix, mass transport is reduced, likely due to the longer diffusion path, which slows the diffusion process. The effect of membrane extension on diffusion is more complicated. Under small deformation, the permeation flux decreases, but under high deformation, it shows an enhanced diffusion. As the clay particle concentration increased, the effect of external deformation is reduced, and an enhanced diffusion is observed. On a synthétisé des membranes en nano-composites de polydiméthysiloxane et d'argile dans le but d'étudier leurs propriétés de transfert de matière. L'effet de la déformation mécanique sur les propriétés de transfert de ces membranes a également été étudié. Avec l'introduction des particules d'argile dans la matrice des polymères, le transfert de matière est réduit, probablement en raison du chemin de diffusion qui est plus long, ce qui ralentit le processus de diffusion. L'effet de l'extension des membranes sur la diffusion est plus compliqué. Sous faible déformation, le flux de perméation diminue, mais sous forte déformation, la diffusion est améliorée. Lorsque la concentration de particules d'argile augmente, l'effet de la déformation externe est réduit, et une meilleure diffusion est observée. [source] Mass Transport in Multilayer Porous Metallic Membranes , Diagnosis, Identification and ValidationCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 4 2009V. Edreva Abstract For a reliable description of mass transfer in membrane reactors the multilayer structure of the membrane is essential. This paper discusses methods which are sufficient to distinguish between homogeneous and composite membranes, and some others which are not. Different mass transport experiments (single gas permeation, isobaric diffusion, transient diffusion) with a porous metallic membrane consisting of two layers and the dusty gas model were used for this purpose. Simultaneous identification of mass transport parameters of both layers was achieved by modern optimization techniques on single gas permeation data. These parameters were validated by isobaric or transient diffusion measurements. [source] Mass transport and thermodynamic analysis of PAHs in partitioning systems in the presence and absence of ultrasonicationAICHE JOURNAL, Issue 10 2010Pedro A. Isaza Abstract Transport of PAHs from Desmopan polymers to methanol under various mixing conditions and in the presence of ultrasound was analyzed. PAH transport was influenced by external transport resistances; however, agitation greater than 800 rpm yielded PAH transport completely limited by internal resistances. Delivery rates of phenanthrene, fluoranthene, and pyrene with ultrasonication were faster than that under any mixing condition, suggesting enhanced internal transport properties. Ultrasound also induced increased concentrations of PAHs in solution at equilibrium. The model developed described PAH delivery under sonicated/non-sonicated conditions, while quantifying diffusive and thermodynamic properties. Diffusivities with and without ultrasound decreased with permeant molecular size agreeing with coefficients determined for similar aromatic compounds in polymers. Partitioning coefficients under sonicated and non-sonicated conditions conclusively differed from each other and decreased as a function of PAH molecular size. Quantitative structure-property relationship data of PAHs yielded factors predicting thermodynamic and transport behaviors, with polarizability being the best descriptor. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source] Mixing of two binary nonequilibrium phases in one dimensionAICHE JOURNAL, Issue 8 2009Kjetil B. Haugen Abstract The mixing of nonequilibrium phases has important applications in improved oil recovery and geological CO2 -storage. The rate of mixing is often controlled by diffusion and modeling requires diffusion coefficients at subsurface temperature and pressure. High-pressure diffusion coefficients are commonly inferred from changes in bulk properties as two phases equilibrate in a PVT cell. However, models relating measured quantities to diffusion coefficients usually ignore convective mass transport. This work presents a comprehensive model of mixing of two nonequilibrium binary phases in one-dimension. Mass transport due to bulk velocity triggered by compressibility and nonideality is taken into account. Ignoring this phenomenon violates local mass balance and does not allow for changes in phase volumes. Simulations of two PVT cell experiments show that models ignoring bulk velocity may significantly overestimate the diffusion coefficients. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Mass transport and flow regimes in centrifugal partition chromatographyAICHE JOURNAL, Issue 8 2002L. Marchal Centrifugal partition chromatography (CPC) is a support-free liquid,liquid separation process that depends for efficiency on the behavior of the two liquid phases. Hydrodynamics of phases was studied according to flow rate and centrifugal acceleration, using a transparent column and a stroboscopic video system. For the heptane-methanol two-phase system, three main flow regimes,stuck film, oscillating sheet, and atomization,are observed, highlighting the coriolis acceleration effect as well as the influence of the column shape. Mass transport in the CPC column is modeled by a plug flow with axial dispersion and mass transfer with a stagnant volume. Model parameters (residence time, Péclet number, partition ratio, and mass-transfer coefficient) are fitted on solute residence-time distribution. Off-column dispersion is an important source of peak broadening in CPC, whereas its irregular geometry provides a plug flow for mobile phase. Importance of flow pattern on mass transfer is demonstrated. CPC interest for preparative applications is confirmed. [source] Microwave-Assisted Electroanalysis: A ReviewELECTROANALYSIS, Issue 2 2009Abstract Microwave-assisted electrochemistry is critically discussed with a focus on the fundamental aspects of the processes involved and its applications in electroanalysis. The concept of direct and nondirect heated electrodes is discussed, and simulation work is evaluated. Microwave-assisted electrochemistry predominantly results in higher current responses (up to 2 magnitudes higher) due to increased temperature and mass transport to the active electrodes. Temperature gradients at microwave-affected electrodes may exceed 105 K/cm, with temperature hotspots found in the thin diffusion layers set up at ultramicroelectrodes. Research into microwave-assisted electroanalysis can lead to enhanced capillary electrophoresis detection, improved stripping voltammetry and development of new high temperature methods. [source] Scanning Electrochemical Microscopy as an In Vitro Technique for Measuring Convective Flow Rates Across Dentine and the Efficacy of Surface Blocking TreatmentsELECTROANALYSIS, Issue 3 2005Julie Abstract Scanning electrochemical microscopy (SECM) is shown to be a powerful technique for both the measurement of local solution velocities through human dentine slices, in vitro, and for assessing quantitatively the effect of surface treatments on the flow process. SECM employs a small ultramicroelectrode (micron dimensions) as an imaging probe to provide information on the topography and transport characteristics of dentine, with high spatial resolution. In these studies the dentine sample is a membrane in a two compartment cell, which contains solutions of identical composition, including a redox active mediator (Fe(CN). In the absence of an applied pressure, the transport-limited current response at the probe electrode is due to diffusion of Fe(CN) to the UME, which depends on the probe to sample separation. Under an applied hydrostatic pressure, hydrodynamic flow across the sample enhances mass transport to the UME. With this methodology it was possible to accurately measure effective fluid velocities, by recording tip currents with and without pressure, and assess the efficacy of potential flow retarding agents for the treatment of dentinal hypersensitivity. For native dentine, the solution velocity was found to vary dramatically with location on the sample. The application of a glycerol monooleate - base paste treatment to the surface of dentine was found to lower local flow velocities significantly. This electroanalytical methodology is simple to implement and is generally applicable to assessing the efficacy and mode of action of a wide variety of potential fluid flow retarding agents. [source] Characterization and Assessment of the Microjet Electrode as a Detector for HPLCELECTROANALYSIS, Issue 9 2004Susan Cannan Abstract The microjet electrode (MJE) is characterized as a detector for high performance liquid chromatography (HPLC). Voltammetric measurements of the oxidation of hydroquinone (HQ) allow mass transport to be determined for the MJE detector configuration, and the factors controlling the conversion efficiency of the device to be well understood. The current-time response to the flow injection analysis of volumes of solution in the 10,80,,L range has been established, and the limit of detection of this method has been determined. The latter was found to approach that of UV absorbance measurements, which is particularly encouraging, given that HQ has a relatively strong chromophore (,=2,290.8,cm,1 mol,1,L). This detection system is a robust and simple arrangement with the capability of analyzing large volumes of eluent at typical analytical HPLC flow rates. [source] High-Temperature Electrochemistry: A ReviewELECTROANALYSIS, Issue 6 2004Gregory Abstract High-temperature electrochemistry remains a relatively unexplored field of research, although in recent years significant developments have been made. This report details the main experimental methods and approaches to heating an electrochemical system under both isothermal and non-isothermal conditions and gives an insight into the experimental and electroanalytical results obtainable under such conditions. It has been shown that the promotion of mass transport at high-temperatures, through diffusion or convection, often results in increased current signals. This increase benefits electroanalytical measurements by lowering detection limits. High temperatures also usefully enhance the sensitivity of systems with sluggish kinetics. [source] Hydrodynamic Modulation Voltammetry with a Dual Disk Chopped Flow-Microjet Electrode (CF-MJE)ELECTROANALYSIS, Issue 18 2003Nafeesa Simjee Abstract A novel form of hydrodynamic modulation voltammetry (HMV) is described, based on the periodic variation of mass transport in a microjet electrode (MJE) system, in combination with phase-sensitive detection techniques. In the configuration developed, a jet of solution is fired from a nozzle that is aligned directly over the surface of a dual disk Pt-Pt ultramicroelectrode (UME). The potential at each electrode is controlled separately. A rotating blade, positioned between the nozzle and the UME probe, is used to periodically interrupt flow to the electrode surface, resulting in modulation of the overall mass transfer rate between two defined extremes. The use of a dual disk UME enables two transport-limited current signals to be recorded simultaneously, one for the analyte of interest, and the other for a ,reference species' (oxygen for the studies described herein). The latter current response corresponds to the variation in mass transport rate in the chopped flow (CF) arrangement and is used as the signal for phase sensitive detection of the analyte current. Studies of potassium hexachloroiridate (III) [IrCl] oxidation in aqueous solution are used to demonstrate the capabilities of the technique. HMV in the CF-MJE arrangement allows quantitative concentration measurements, down to at least 5×10,7,M. [source] Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2003Tjalling Jager Abstract The bioavailability of polycyclic aromatic hydrocarbons (PAHs) for earthworms (Eisenia andrei) was experimentally determined in seven field-polluted soils and 15 soil-sediment mixtures. The pore-water concentration of most PAHs was higher than predicted. However, most of the compound was associated with dissolved organic carbon (DOC) and not directly available for uptake by earthworms. The apparent sorption could be reasonably predicted on the basis of interactions with DOC; however, the biota-soil accumulation factors (BSAFs) for earthworms were up to two orders of magnitude lower than predicted by equilibrium partitioning. The large variability between sites was not fully explained by differences in sorption. Experimental results indicate that the pool of freely dissolved PAHs in the pore water became partially depleted because of uptake by the earthworms and that bioaccumulation is thus also influenced by the kinetics of PAH desorption and mass transport. A pilot study with Lumbricus rubellus showed that steady-state body residues were well correlated to E. andrei. Current results show that depositing dredge spoil on land may lead to increased bioavailability of the lower-molecular-weight PAHs. However, risk assessment can conservatively rely on equilibrium partitioning, but accurate prediction requires quantification of the kinetics of bioavailability. [source] New Developments in Vertical Gradient Freeze Growth,ADVANCED ENGINEERING MATERIALS, Issue 7 2004O. Pätzold The Vertical Gradient Freeze (VGF) technique is an important method for growing high quality compound semiconductors such as GaAs. Results obtained with a novel VGF set-up developed for the growth under influence of a rotating magnetic field (RMF) and under vapour pressure control are presented in this paper. The RMF is shown to be a powerful tool to affect the heat and mass transport within the melt in a definite way. In GaAs:Si growth, RMF induced flow results in a decreased curvature of a nominally concave-shaped interface, i.e., it contributes to an axial heat transfer at the solid-liquid interface. The axial dopant segregation of Ga in Ge is found to be improved under continuous RMF action due to better mixing of the melt. The set-up also allowed to determine the influence of carbon and the arsenic vapour pressure on the dopant incorporation and crystal quality. [source] Effective thermal actions and thermal properties of timber members in natural firesFIRE AND MATERIALS, Issue 1 2006Jürgen KönigArticle first published online: 28 JUL 200 Abstract For the thermal analysis of structural or non-structural timber members, using conventional simplified heat transfer models, thermal conductivity values of timber are normally calibrated to test results such that they implicitly take into account influences such as mass transport that are not included in the model. Various researchers and designers have used such effective thermal conductivity values, originally determined for standard fire exposure, to evaluate other fire scenarios such as natural fires. This paper discusses in qualitative terms some parameters that govern the burning of wood and their influence on effective conductivity values. Reviewing fire tests of timber slabs under natural fire conditions, the study explains why effective conductivity values, giving correct results for the ISO 834 standard fire scenario, should not be used in other fire scenarios. For this reason, the thermal properties of timber given in EN 1995-1-2 are limited to standard fire exposure. As shown by heat transfer calculations, the effective thermal conductivity of the char layer is strongly dependent on the charring rate and therefore varies during a natural fire scenario. It has also been shown that char oxidation during the decay phase in a natural fire has a significant influence on the temperature development in the timber member, since char surface temperatures exceed the gas temperature in the compartment or furnace. Using increased effective gas temperature as thermal action during the decay phase, and varying conductivity values for the char layer, fairly good agreement could be obtained regarding the temperature development in the timber member and the char depth. Copyright © 2005 John Wiley & Sons, Ltd. [source] WDX Studies on Ceramic Diffusion Barrier Layers of Metal Supported SOECsFUEL CELLS, Issue 6 2009D. Wiedenmann Abstract Solid oxide electrolyser cells (SOECs) have great potential for efficient and economical production of hydrogen fuel. Element diffusion between the Ni-cermet electrode and the metal substrate of metal supported cells (MSC) is a known problem in fuel cell and electrolysis technology. In order to hinder this unintentional mass transport, different ceramic diffusion barrier layers (DBLs) are included in recent cell design concepts. This paper is based on wavelength dispersive X-ray fluorescence investigations of different SOEC and focuses on Fe, Cr and Ni diffusion between the metal grains of the cathode and the metal substrate. Due to the low detection limits and therefore high analytical sensitivity, wavelength dispersive electron probe microanalysis (EPMA) provides a precise method to determine element distribution, absolute element concentration and changes between the reference material and aged cells on a microstructural level by element mappings and concentration profiles. The results of this work show considerable concentration gradients in the metal grains caused by mass exchange during cell operation. Diffusion can be inhibited significantly by integrating different ceramic DBLs of doped LaCrO3 -type or doped LaMnO3 -type perovskite, either by vacuum plasma spraying (VPS) or physical vapour deposition technique (PVD). [source] The Influence of Mass Transfer on a Porous Fuel Cell ElectrodeFUEL CELLS, Issue 1-2 2004Y.-P. Sun Abstract A one-dimensional model for a porous fuel cell electrode using a liquid electrolyte with dissolved reactant is presented. The model consists of a Poisson, second-order ordinary differential equation, describing the effect of the electric field and a one-dimensional; Fickian diffusion, second-order ordinary differential equation describing the concentration variation associated with diffusion. The model accounts for mass transport and heterogeneous electrochemical reaction. The solution of this model is by the approximate Adomian polynomial method and is used to determine lateral distributions of concentration, overpotential and current density and overall cell polarisation. The model is used to simulate the effects of important system and operating parameters, i.e. local diffusion rates, and mass transport coefficients and electrode polarisation behaviour. [source] Modeling fluid saturated porous media under frost attackGAMM - MITTEILUNGEN, Issue 1 2010Tim Ricken Abstract Freezing and thawing are important processes in civil engineering. On the one hand frost damage of porous building materials like road pavements and concrete in regions with periodical freezing is well known. On the other hand, artificial freezing techniques are widely used, e.g. for tunneling in non-cohesive soils and other underground constructions as well as for the protection of excavation and compartmentalization of contaminated tracts. Ice formation in porous media results from a coupled heat and mass transport and is accompanied by the ice expansion. The volume increase in space and time is assigned to the moving freezing front inside the porous solid. In this paper, a macroscopic ternary model is presented within the framework of the Theory of Porous Media (TPM) in view of the description of phase transition. For the mass exchange between ice and water an evolution equation based on the local balance of the heat flux vector is used. Examples illustrate the application of the model for saturated porous solids under thermal loading (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Heat and mass transfer phenomena in magnetic fluidsGAMM - MITTEILUNGEN, Issue 1 2007Th. Völker Abstract In this article the influence of a magnetic field on heat and mass transport phenomena in magnetic fluids (ferrofluids) will be discussed. The first section is dealing with a magnetically driven convection, the so called thermomagnetic convection while in the second section the influence of a temperature gradient on the mass transport, the Soret effect in ferrofluids, is reviewed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Chemical modification of pyroclastic rock by hot water: an experimental investigation of mass transport at the fluid,solid interfaceGEOFLUIDS (ELECTRONIC), Issue 1 2009J. HARA Abstract Hydrothermal water,(pyroclastic) rock interactions were examined using flow-through experiments to deduce the effect of mass transport phenomena on the reaction process. A series of experiments were conducted over the temperature range 75,250°C, with a constant temperature for each experiment, and at saturated vapour pressure, to estimate the apparent rate constants as a function of temperature. Based on the chemistry of analysed solutions, the water,rock interaction in the experiments was controlled by diffusion from the reaction surface and by the existence of a surface layer at the rock,fluid interface, which regulated the chemical reaction rate. The reaction progress depended to a high degree on flow velocity and temperature conditions, with element abundances in the fluid significantly affected by these factors. Mass transport coefficients for diffusion from the rock surface to the bulk solution have been estimated. Ca is selectively depleted under lower temperature conditions (T < 150°C), whereas Na is greatly depleted under higher temperature conditions (T > 150°C), and K reaction rates are increased when flow velocity increases. Using these conditions, specific alkali and alkali earth cations were selectively leached from mineral surfaces. The ,surface layer' comprised a 0.5,1.8 mm boundary film on the solution side (the thickness of this layer has no dependence on chemical character) and a reaction layer. The reaction layer was composed of a Si, Al-rich cation-leached layer, whose thickness was dependent on temperature, flow velocity and reaction length. The reaction layer varied in thickness from about 10,4 to 10,7 mm under high temperature/low fluid velocity and low temperature/high fluid velocity conditions, respectively. [source] Numerical modelling of 3D fluid flow and oxygen isotope exchange in fractured media: spatial distribution of isotope patternsGEOFLUIDS (ELECTRONIC), Issue 4 2007C. SAVARD Abstract An understanding of fluid flow, mass transport and isotopic exchange in fractured rock is required to understand the origin of several geological processes including hydrothermal mineral deposits. The numerical model HydroGeoSphere simulates 3D advection, molecular diffusion, mechanical dispersion and isotopic exchange in a discretely fractured porous media, and can be used to better understand the processes of mass transport and isotopic exchange in fractured rocks. Study of 18O isopleth patterns for different types of fractures and fracture networks with a range of structural complexity and hydraulic properties shows that fracture properties and geometry control mass transport and isotopic exchange. The hydraulic properties, as well as the density, spacing, and connectivity of fractures determine the isotopic patterns. Asymmetries in the geometry of oxygen isotope patterns could be used to determine the direction of hydrothermal fluid flow. [source] Evaluating MT3DMS for Heat Transport Simulation of Closed Geothermal SystemsGROUND WATER, Issue 5 2010Jozsef Hecht-Méndez Owing to the mathematical similarities between heat and mass transport, the multi-species transport model MT3DMS should be able to simulate heat transport if the effects of buoyancy and changes in viscosity are small. Although in several studies solute models have been successfully applied to simulate heat transport, these studies failed to provide any rigorous test of this approach. In the current study, we carefully evaluate simulations of a single borehole ground source heat pump (GSHP) system in three scenarios: a pure conduction situation, an intermediate case, and a convection-dominated case. Two evaluation approaches are employed: first, MT3DMS heat transport results are compared with analytical solutions. Second, simulations by MT3DMS, which is finite difference, are compared with those by the finite element code FEFLOW and the finite difference code SEAWAT. Both FEFLOW and SEAWAT are designed to simulate heat flow. For each comparison, the computed results are examined based on residual errors. MT3DMS and the analytical solutions compare satisfactorily. MT3DMS and SEAWAT results show very good agreement for all cases. MT3DMS and FEFLOW two-dimensional (2D) and three-dimensional (3D) results show good to very good agreement, except that in 3D there is somewhat deteriorated agreement close to the heat source where the difference in numerical methods is thought to influence the solution. The results suggest that MT3DMS can be successfully applied to simulate GSHP systems, and likely other systems with similar temperature ranges and gradients in saturated porous media. [source] Nucleation-Governed Reversible Self-Assembly of an Organic Semiconductor at Surfaces: Long-Range Mass Transport Forming Giant Functional Fibers,ADVANCED FUNCTIONAL MATERIALS, Issue 18 2007G. De, Luca Abstract The use of solvent-vapor annealing (SVA) to form millimeter-long crystalline fibers, having a sub-micrometer cross section, on various solid substrates is described. Thin films of a perylene-bis(dicarboximide) (PDI) derivative, with branched alkyl chains, prepared from solution exhibit hundreds of nanometer-sized PDI needles. Upon exposure to the vapors of a chosen solvent, tetrahydrofuran (THF), the needles re-organize into long fibers that have a remarkably high aspect ratio, exceeding 103. Time- and space-resolved mapping with optical microscopy allows the self-assembly mechanism to be unravelled; the mechanism is found to be a nucleation-governed growth, which complies with an Avrami-type of mechanism. SVA is found to lead to self-assembly featuring i),long-range order (up to the millimeter scale), ii),reversible characteristics, as demonstrated through a series of assembly and disassembly steps, obtained by cycling between THF and CHCl3 as solvents, iii),remarkably high mass transport because the PDI molecular motion is found to occur at least over hundreds of micrometers. Such a detailed understanding of the growth process is fundamental to control the formation of self-assembled architectures with pre-programmed structures and physical properties. The versatility of the SVA approach is proved by its successful application using different substrates and solvents. Kelvin probe force microscopy reveals that the highly regular and thermodynamically stable fibers of PDI obtained by SVA exhibit a greater electron-accepting character than the smaller needles of the drop-cast films. The giant fibers can be grown in,situ in the gap between microscopic electrodes supported on SiOx, paving the way towards the application of SVA in micro- and nanoelectronics. [source] Advanced Material Strategies for Tissue Engineering ScaffoldsADVANCED MATERIALS, Issue 32-33 2009Lisa E. Freed Abstract Tissue engineering seeks to restore the function of diseased or damaged tissues through the use of cells and biomaterial scaffolds. It is now apparent that the next generation of functional tissue replacements will require advanced material strategies to achieve many of the important requirements for long-term success. Here, we provide representative examples of engineered skeletal and myocardial tissue constructs in which scaffolds were explicitly designed to match native tissue mechanical properties as well as to promote cell alignment. We discuss recent progress in microfluidic devices that can potentially serve as tissue engineering scaffolds, since mass transport via microvascular-like structures will be essential in the development of tissue engineered constructs on the length scale of native tissues. Given the rapid evolution of the field of tissue engineering, it is important to consider the use of advanced materials in light of the emerging role of genetics, growth factors, bioreactors, and other technologies. [source] Optimal transportation meshfree approximation schemes for fluid and plastic flowsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2010B. Li Abstract We develop an optimal transportation meshfree (OTM) method for simulating general solid and fluid flows, including fluid,structure interaction. The method combines concepts from optimal transportation theory with material-point sampling and max-ent meshfree interpolation. The proposed OTM method generalizes the Benamou,Brenier differential formulation of optimal mass transportation problems to problems including arbitrary geometries and constitutive behavior. The OTM method enforces mass transport and essential boundary conditions exactly and is free from tension instabilities. The OTM method exactly conserves linear and angular momentum and its convergence characteristics are verified in standard benchmark problems. We illustrate the range and scope of the method by means of two examples of application: the bouncing of a gas-filled balloon off a rigid wall; and the classical Taylor-anvil benchmark test extended to the hypervelocity range. Copyright © 2010 John Wiley & Sons, Ltd. [source] Investigation of nanoscale electrohydrodynamic transport phenomena in charged porous materialsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 14 2005P. Pivonka Abstract Depending on the permeability of porous materials, different mass transport mechanisms have to be distinguished. Whereas mass transport through porous media characterized by low permeabilities is governed by diffusion, mass transport through highly permeable materials is governed by advection. Additionally a large number of porous materials are characterized by the presence of surface charge which affects the permeability of the porous medium. Depending on the ion transport mechanism various phenomena such as co-ion exclusion, development of diffusion,exclusion potentials, and streaming potentials may be encountered. Whereas these various phenomena are commonly described by means of different transport models, a unified description of these phenomena can be made within the framework of electrohydrodynamics. In this paper the fundamental equations describing nanoscale multi-ion transport are given. These equations comprise the generalized Nernst,Planck equation, Gauss' theorem of electrostatics, and the Navier,Stokes equation. Various phenomena such as the development of exclusion potentials, diffusion,exclusion potentials, and streaming potentials are investigated by means of finite element analyses. Furthermore, the influence of the surface charge on permeability and ion transport are studied in detail for transient and steady-state problems. The nanoscale findings provide insight into events observed at larger scales in charged porous materials. Copyright © 2005 John Wiley Sons, Ltd. [source] Multiresponsive, Hierarchically Structured Membranes: New, Challenging, Biomimetic Materials for Biosensors, Controlled Release, Biochemical Gates, and NanoreactorsADVANCED MATERIALS, Issue 2 2009Ihor Tokarev Multifunctional responsive gel membranes present a new and promising platform for the development of "smart" devices for bioseparation, biosensors, and "smart" drug release. These membranes combine the functions of stimuli-responsive control and regulation of the mass transport with a range of properties, such as storage, catalysis of chemical reactions, antimicrobial activity, and optical signal transduction. [source] A control volume capacitance method for solidification modelling with mass transportINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2002K. Davey Abstract Capacitance methods are popular methods used for solidification modelling. Unfortunately, they suffer from a major drawback in that energy is not correctly transported through elements and so provides a source of inaccuracy. This paper is concerned with the development and application of a control volume capacitance method (CVCM) to problems where mass transport and solidification are combined. The approach adopted is founded on theory that describes energy transfer through a control volume (CV) moving relative to the transporting mass. An equivalent governing partial differential equation is established, which is designed to be transformable into a finite element system that is commonly used to model transient heat-conduction problems. This approach circumvents the need to use the methods of Bubnov,Galerkin and Petrov,Galerkin and thus eliminates many of the stability problems associated with these approaches. An integration scheme is described that accurately caters for enthalpy fluxes generated by mass transport. Shrinkage effects are neglected in this paper as all the problems considered involve magnitudes of velocity that make this assumption reasonable. The CV approach is tested against known analytical solutions and is shown to be accurate, stable and computationally competitive. Copyright © 2002 John Wiley & Sons, Ltd. [source] Adaptive finite elements with large aspect ratio for mass transport in electroosmosis and pressure-driven microflowsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2010Virabouth Prachittham Abstract A space,time adaptive method is presented for the numerical simulation of mass transport in electroosmotic and pressure-driven microflows in two space dimensions. The method uses finite elements with large aspect ratio, which allows the electroosmotic flow and the mass transport to be solved accurately despite the presence of strong boundary layers. The unknowns are the external electric potential, the electrical double layer potential, the velocity field and the sample concentration. Continuous piecewise linear stabilized finite elements with large aspect ratio and the Crank,Nicolson scheme are used for the space and time discretization of the concentration equation. Numerical results are presented showing the efficiency of this approach, first in a straight channel, then in crossing and multiple T-form configuration channels. Copyright © 2009 John Wiley & Sons, Ltd. [source] Stability and accuracy of a semi-implicit Godunov scheme for mass transportINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2004Scott F. Bradford Abstract Semi-implicit, Godunov-type models are adapted for solving the two-dimensional, time-dependent, mass transport equation on a geophysical scale. The method uses Van Leer's MUSCL reconstruction in conjunction with an explicit, predictor,corrector method to discretize and integrate the advection and lateral diffusion portions of the governing equation to second-order spatial and temporal accuracy. Three classical schemes are investigated for computing advection: Lax-Wendroff, Warming-Beam, and Fromm. The proposed method uses second order, centred finite differences to spatially discretize the diffusion terms. In order to improve model stability and efficiency, vertical diffusion is implicitly integrated with the Crank,Nicolson method and implicit treatment of vertical diffusion in the predictor is also examined. Semi-discrete and Von Neumann analyses are utilized to compare the stability as well as the amplitude and phase accuracy of the proposed method with other explicit and semi-implicit schemes. Some linear, two-dimensional examples are solved and predictions are compared with the analytical solutions. Computational effort is also examined to illustrate the improved efficiency of the proposed model. Copyright © 2004 John Wiley & Sons, Ltd. [source] |