Home About us Contact | |||
Mass Spectrometry Study (mass + spectrometry_study)
Selected AbstractsMass spectrometry study of ecto-5,-nucleotidase from bull seminal plasmaFEBS JOURNAL, Issue 16 2000Carlo Fini The structure of ecto-5,-nucleotidase from bull seminal plasma, containing a glycosyl-phosphatidylinositol anchor, was studied using mass spectrometry. MALDI-MS analysis of intact protein indicated a mass of 65 568.2 Da for the monomeric form, and it also showed a heterogeneous population of glycoforms with the glycosidic moiety accounting for ,,6000 Da. MALDI-MS analysis showed that Asn53, Asn311, Asn333 and Asn403 were four sites of N -glycosylation. GC-MS analysis provided information on the glycosidic structures linked to the four asparagines. Asn53, Asn311 and Asn333 were linked to high-mannose saccharide chains, whereas the glycan chains linked to Asn403 contained a heterogeneous mixture of oligosaccharides, the high-mannose type structure being the most abundant and hybrid or complex type glycans being minor components. By combining enzymatic and/or chemical hydrolysis with GC-MS analysis, detailed characterization of the glycosyl-phpsphatidylinositol anchor was obtained. MALDI spectral analysis indicated that the glycosyl-phosphatidylinositol core contained EtN(P)Man3GlcNH2 -myo-inositol(P)-glycerol, principally modified by stearoyl and palmitoyl residues or by stearoyl and myristoyl residues to a minor extent. Moreover, 1-palmitoylglycerol and 1-stearoylglycerol outweighed 2-palmitoylglycerol and 2-stearoylglycerol. The combination of chemical and enzymatic digestions of the protein with the mass spectral analysis yielded a complete pattern of S,S bridges. The protein does not contain free thiols and its eight cysteines are linked by intramolecular disulfide bonds, the pairs being: Cys51,Cys57, Cys353,Cys358, Cys365,Cys387 and Cys476,Cys479. This work resolves details of the structure of ecto-5,-nucleotidase, with particular regard to the localization and composition of the glycidic moiety, number and localization of the disulfide bridges and characterization of the glycosyl-phosphatidylinositol anchor. [source] Mass spectrometry study of hemoglobin-oxaliplatin complexes in colorectal cancer patients and potential association with chemotherapeutic responsesRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2006Rupasri Mandal Oxaliplatin is the most active platinum (Pt)-containing anticancer drug for the treatment of advanced colorectal cancer. We report here the study of potential association of the levels of oxaliplatin-protein complexes in 19 cancer patients with treatment efficacy using size-exclusion high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC/ICPMS) and nanoelectrospray ionization mass spectrometry (nanoESI-MS) techniques. Blood samples from 19 colorectal cancer patients were collected at 1 and 48,h after the first infusion of oxaliplatin. HPLC/ICPMS quantification of the oxaliplatin-protein complexes showed that the levels of Pt-protein complexes in plasma samples at 48,h were reduced by approximately 50% compared to those at 1,h, whereas those in hemolysates did not change significantly. The concentrations of hemoglobin (Hb)-oxaliplatin complexes determined by HPLC/ICPMS ranged from 3.1 to 8.7,µM. NanoESI-MS analysis of the patient hemolysates showed three distinct mass spectral profiles of the Hb-oxaliplatin complexes: (1) 1:1, (2) 1:1 with 1:2, and (3) multiple complexes of 1:1, 1:2, 1:3, and 1:4, corresponding to the Hb-oxaliplatin complex concentrations determined by HPLC/ICPMS. Potential association of variables including Hb-oxaliplatin complex concentrations with time to progress as the treatment efficacy indicator was analyzed using the Cox model. Multivariate analysis of the potential predictors showed that the statistically significant variables were Hb-oxaliplatin complex concentration (p,=,0.02), performance status (p,=,0.02), baseline neutrophil count (p,=,0.05), and the site of the primary cancer (colon vs. rectal, p,=,0.01). The hazard ratio for the concentration of the Hb-oxaliplatin complexes was 2.4, suggesting that the risk of cancer progression significantly increased with increasing of Hb-oxaliplatin complexes in patients. These results demonstrate that the level of the Hb-oxaliplatin complexes in erythrocytes is a potential biomarker for indicating inter-patient variations in oxaliplatin treatment efficacy. Copyright © 2006 John Wiley & Sons, Ltd. [source] Electrospray ionization mass spectrometry study on dipeptide 4-chlorobutyl ester produced from refluxing of amino acid with phosphoryl chloride in tetrahydrofuranJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 10 2005Gui Ji Zhou Abstract Phosphoryl chloride was able to promote the formation of peptide and the ringopening of tetrahydrofuran (THF) followed by a sequence of successive reactions by simply refluxing. ESI multistage tandem mass spectrometry was applied to trace the reaction and elucidate the product structures, dipeptide 4-chlorobutyl ester. Copyright © 2005 John Wiley & Sons, Ltd. [source] Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry study on copolymers obtained by the alternating copolymerization of bis(,-lactone) and epoxide with potassium tert -butoxideJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 12 2005Chenxi Zhang Abstract Oligomer samples obtained by the anionic copolymerization of a bis(,-lactone), 2,8-dioxa-1-methylbicyclo[3.3.0]octane-3,7-dione (1), and glycidyl phenyl ether with potassium tert -butoxide have been analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The MALDI-TOF mass spectra of these cooligomers show well-resolved signals that can be reliably assigned to linear, alternating cooligomers that have carboxylate chain ends or alkoxide chain ends and cyclic ones. The formation of these three series of cooligomers suggests that the polymerization process involves concomitant intermolecular transesterification and intramolecular back-biting. The intramolecular back-biting reaction causes the formation of cyclic cooligomers, whereas the intermolecular transesterification causes the reduction of the molecular weight and the transformation of the alkoxide active chain end into a carboxylate chain end. The MALDI-TOF mass spectrometry study has shown that an excess of monomer 1 enhances the selectivity of propagation by increasing the probability of the attack of the alkoxide chain end to 1. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2643,2649, 2005 [source] Hybridization of short complementary PNAs to G-quadruplex forming oligonucleotides: An electrospray mass spectrometry studyBIOPOLYMERS, Issue 4 2009Jussara Amato Abstract We investigated the interaction of the short peptide nucleic acid (PNA) strand [acccca]-PNA with oligodeoxynucleotides containing one, two, or four tracts of TGGGGT units. Electrospray ionization mass spectrometry allowed exploring the wide variety of complex stoichiometries that were found to coexist in solution. In water, the PNA strand forms short heteroduplexes with the complementary DNA sequences, but higher-order structures are also found, with PNA2n·DNAn triplex units, culminating in precipitation at very low ionic strength. In the presence of ammonium acetate, there is a competition between PNA·DNA heteroduplex formation and DNA G-quadruplex formation. Heteroduplex formation is favored when the PNA + DNA mixture in ammonium acetate is heated and cooled at room temperature, but not if the PNA is added at room temperature to the preformed G-quadruplex. We also found that the short [acccca]-PNA strand binds to G-quadruplexes. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 244,255, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |