Mass Spectrometric (mass + spectrometric)

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Mass Spectrometric

  • ionization mass spectrometric
  • liquid mass spectrometric
  • tandem mass spectrometric

  • Terms modified by Mass Spectrometric

  • mass spectrometric analysis
  • mass spectrometric characterization
  • mass spectrometric data
  • mass spectrometric detection
  • mass spectrometric experiment
  • mass spectrometric fragmentation
  • mass spectrometric investigation
  • mass spectrometric method
  • mass spectrometric methods
  • mass spectrometric result
  • mass spectrometric studies
  • mass spectrometric study
  • mass spectrometric technique
  • mass spectrometric techniques

  • Selected Abstracts


    Direct injection horse-urine analysis for the quantification and confirmation of threshold substances for doping control.

    DRUG TESTING AND ANALYSIS, Issue 8 2009

    Abstract Levodopa and dopamine have been abused as performance-altering substances in horse racing. Urinary 3-methoxytyramine is used as an indicator of dopaminergic manipulation resulting from dopamine or levodopa administration and is prohibited with a urinary threshold of 4 µg mL,1 (free and conjugated). A simple liquid chromatographic (LC)/mass spectrometric (MS) (LCMS) method was developed and validated for the quantification and identification of 3-methoxytyramine in equine urine. Sample preparation involved enzymatic hydrolysis and protein precipitation. Hydrophilic interaction liquid chromatography (HILIC) was selected as a separation technique that allows effective retention of polar substances like 3-methoxytyramine and efficient separation from matrix compounds. Electrospray ionization (ESI) in positive mode with product ion scan mode was chosen for the detection of the analytes. Quantification of 3-methoxytyramine was performed with fragmentation at low collision energy, resulting in one product ion, while a second run at high collision energy was performed for confirmation (at least three abundant ions). Studies on matrix effects showed ion suppression depending on the horse urine used. To overcome the variability of the results originating from the matrix effects, isotopic labelled internal standard was used and linear regression calibration methodology was applied for the quantitative determination of the analyte. The tested linear range was 1,20 µg mL,1. The relative standard deviations of intra- and inter- assay analysis of 3-methoxytyramine in horse urine were lower than 4.2% and 3.2%, respectively. Overall accuracy (relative percentage error) was less than 6.2%. The method was applied to case samples, demonstrating simplicity, accuracy and selectivity. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Formation and Stability of the Gaseous Species LiAlCl4, Li2AlCl5 and LiAl2Cl7 , Mass Spectrometric and Quantum Chemical Studies

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 26 2008
    H. Saal
    Abstract The formation of the gaseous species LiCl, Li2Cl2, AlCl3 and LiAlCl4 was shown by mass spectrometric studies of the reaction of solid LiCl with gaseous AlCl3 at 575 °C. Besides AlCl3 and Al2Cl6, the gas complexes LiAlCl4, Li2AlCl5 and LiAl2Cl7 were formed during the evaporation of liquefied LiAlCl4. The structures of the molecules under discussion were computed by quantum chemical DFT studies. Thermodynamic data of these molecules were determined by experimental methods (mass spectrometry), and the results were confirmed by theoretical calculations. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


    Evaluation of the Photodegradation of Crystal Violet upon Light Exposure by Mass Spectrometric and Spectroscopic Methods

    JOURNAL OF FORENSIC SCIENCES, Issue 2 2009
    Céline Weyermann Dr. rer. nat.
    Abstract:, Crystal violet is a very common dye in ballpoint ink. Recent research suggests that the degradation of triarylmethane dyes gives an indication of the age of a ballpoint pen entry on a document. The main problem for the quantitative evaluation of the degradation is that it is highly dependent on the exposure to light. Moreover additional factors, such as additives and substrate play an important role in this process. The aim of this work is to compare the degradation pathways of the pure dye in water and ethanol upon exposure to xenon light by UV/VIS spectrophotometry and laser desorption ionization. Significant differences have been observed in the products and the kinetics of the degradation. N-demethylation, an expected decomposition process, was found to take place only in aqueous solution and kinetics calculations showed that the degradation occurred 2.5 times faster in ethanol compared to water. The degradation of crystal violet in inks from four ballpoint pens on paper was also studied for entries made over 2,3 years. It was observed that degradation reactions were quenched by the presence of another dye due to competitive absorption. It was also observed that the thickness of a stroke (concentration of ink) influenced the degradation process. In the absence of light only one ballpoint pen showed slight degradation. A better understanding of the influence of the paper, ink composition, and storage conditions is necessary to interpret correctly the age of an ink based on the degradation of dyes. [source]


    ChemInform Abstract: Formation and Stability of the Gaseous Species LiAlCl4, Li2AlCl5 and LiAl2Cl7 , Mass Spectrometric and Quantum Chemical Studies.

    CHEMINFORM, Issue 50 2008
    H. Saal
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    Mass spectrometric and chemical stability of the Asp-Pro bond in herpes simplex virus epitope peptides compared with X-Pro bonds of related sequences

    JOURNAL OF PEPTIDE SCIENCE, Issue 8 2002
    Zsolt Skribanek
    Abstract The mass spectrometric analysis of the immunodominant epitope region (273,284) of herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) showed a favoured fission at the Asp-Pro peptide bond. The fast atom bombardment collision induced dissociation (FAB-CID) study of closely related X-Pro peptides documented that neither the length nor the amino acid composition of the peptide has a significant influence on this preferential cleavage. At the same time the DP bond proved to be sensitive to acidic conditions in the course of peptide synthesis. These observations prompted us to compare the chemical and mass spectrometric stability of a new set of nonapeptides related to the 273,284 epitope region of gD, i.e. SALLEDPVG and SALLEXPVG peptides, where X = A, K, I, S, F, E or D, respectively. The chemical stability of these peptides during acidic hydrolysis was investigated by electrospray ionization mass spectrometry (ESI-MS) and the products were identified by ESI-MS and on-line high performance liquid chromatography,mass spectrometry (HPLC-MS). The mass spectrometric fragmentation and bond stability of the untreated peptide samples were also studied using ESI-MS and liquid secondary ion mass spectrometry (LSIMS). Both the chemical hydrolysis and the mass spectrometric fragmentation showed that the Asp-Pro bond could easily be cleaved, while the KP bond proved to be stable under both circumstances. On the other hand, the XP bond (X = A, I, S, F or E) fragmented easily under the mass spectrometric conditions, but was not sensitive to the acidolysis. Copyright © 2002 European Peptide Society and John Wiley & Sons, Ltd. [source]


    Cysteine-reactive covalent capture tags for enrichment of cysteine-containing peptides

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 21 2009
    Priscille Giron
    Considering the tremendous complexity and the wide dynamic range of protein samples from biological origin and their proteolytic peptide mixtures, proteomics largely requires simplification strategies. One common approach to reduce sample complexity is to target a particular amino acid in proteins or peptides, such as cysteine (Cys), with chemical tags in order to reduce the analysis to a subset of the whole proteome. The present work describes the synthesis and the use of two new cysteinyl tags, so-called cysteine-reactive covalent capture tags (C3T), for the isolation of Cys-containing peptides. These bifunctional molecules were specifically designed to react with cysteines through iodoacetyl and acryloyl moieties and permit efficient selection of the tagged peptides. To do so, a thioproline was chosen as the isolating group to form, after a deprotection/activation step, a thiazolidine with an aldehyde resin by the covalent capture (CC) method. The applicability of the enrichment strategy was demonstrated on small synthetic peptides as well as on peptides derived from digested proteins. Mass spectrometric (MS) analysis and tandem mass spectrometric (MS/MS) sequencing confirmed the efficient and straightforward selection of the cysteine-containing peptides. The combination of C3T and CC methods provides an effective alternative to reduce sample complexity and access low abundance proteins. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Structural analysis of oligosaccharides by atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap mass spectrometry

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 3 2002
    Colin S. Creaser
    An ion source incorporating a fibre optic interface has been constructed for atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap mass spectrometry. The configuration has been applied to the study of linear and complex oligosaccharides. Multi-stage tandem mass spectrometry (MSn, n,=,2,4) experiments carried out in the ion trap enable extended fragmentation pathways to be investigated that yield structural information. Collisional activation of sodiated oligosaccharides, as demonstrated on the model compound maltoheptaose, produces primarily B and Y fragments resulting from cleavage of glycosidic bonds; fragments from cross-ring cleavages are also observed following further stages of tandem mass spectrometry, providing additional linkage information. The analyses of mixtures of complex oligosaccharides are demonstrated for N-linked glycans from chicken egg glycoproteins and a ribonuclease glycan mixture. Mass spectrometric and tandem mass spectrometric data for sugars with molecular weights up to 4000,Da is shown for mixtures of linear dextrans and N-linked glycans. The use of MSn (n,=,3,,4) on these complex molecules enabled structural information to be elucidated that confirms data observed in the MS/MS spectra. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Designer drug 2,4,5-trimethoxyamphetamine (TMA-2): Studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 9 2006
    Andreas H. Ewald
    Abstract Studies are described on the metabolism and the toxicological detection of the amphetamine-derived designer drug 2,4,5-trimethoxyamphetamine (TMA-2) in rat urine using gas chromatographic/mass spectrometric (GC/MS) techniques. The identified metabolites indicated that TMA-2 was metabolized by oxidative deamination to the corresponding ketone followed by reduction to the corresponding alcohol, O -demethylation followed by oxidative deamination, and finally O,O -bis-demethylation. All metabolites carrying hydroxy groups were found to be partly excreted in urine as glucuronides and/or sulfates. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction, and microwave-assisted acetylation allowed the detection, in rat urine, of an intake of TMA-2 that corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure in human urine should be suitable as proof of an intake of TMA-2. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Combination of liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry for the detection of 21 anabolic steroid residues in bovine urine

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2005
    Christof Van Poucke
    Abstract For the detection of anabolic steroid residues in bovine urine, a highly sensitive liquid chromatographic/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method was developed using both positive and negative ionization. For four compounds the ESI mode was not sensitive enough and gas chromatographic/mass spectrometric GC/MS detection was therefore still necessary as a complementary method. The sample clean-up consisted of solid-phase extraction (SPE) on a C18 column followed by enzymatic hydrolysis and a second solid-phase extraction on a combination of a C18 and a NH2 column. After this last SPE clean-up, the eluate was split into two equal aliquots. One aliquot was further purified and after derivatization used for GC/MS analysis. The other aliquot was analyzed with LC/MS/MS in both ESI+ and ESI, modes. The method was validated according to the European Commission Decision 2002/657/EC. Decision limits (CC,) were between 0.16 and 1 ng ml,1 for the compounds detected with the LC/MS/MS method. The developed method is used in routine analysis in our laboratory. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Screening, library-assisted identification and validated quantification of 23 benzodiazepines, flumazenil, zaleplone, zolpidem and zopiclone in plasma by liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 8 2004
    Carsten Kratzsch
    Abstract A liquid chromatographic/mass spectrometric assay with atmospheric pressure chemical ionization (LC/APCI-MS) is presented for fast and reliable screening and identification and also for precise and sensitive quantification in plasma of the 23 benzodiazepines alprazolam, bromazepam, brotizolam, camazepam, chlordiazepoxide, clobazam, clonazepam, diazepam, flunitrazepam, flurazepam, desalkylflurazepam, lorazepam, lormetazepam, medazepam, metaclazepam, midazolam, nitrazepam, nordazepam, oxazepam, prazepam, temazepam and tetrazepam, triazolam, their antagonist flumazenil and the benzodiazepine BZ1 (omega 1) receptor agonists zaleplone, zolpidem and zopiclone. It allows confirmation of the diagnosis of an overdose situation and monitoring of psychiatric patients' compliance. The analytes were isolated from plasma using liquid,liquid extraction and were separated on a Merck LiChroCART column with Superspher 60 RP Select B as the stationary phase. Gradient elution was performed using aqueous ammonium formate and acetonitrile. After screening and identification in the scan mode using the authors' LC/MS library, the analytes were quantified in the selected-ion monitoring mode. The quantification assay was fully validated. It was found to be selective proved to be linear from sub-therapeutic to over therapeutic concentrations for all analytes, except bromazepam. The corresponding reference levels the assay's accuracy and precision data for all studied substances are listed. The accuracy and precision data were within the required limits with the exception of those for bromazepam. The analytes were stable in frozen plasma for at least 1 month. The validated assay was successfully applied to several authentic plasma samples from patients treated or intoxicated with various benzodiazepines or with zaleplone, zolpidem or zopiclone. It has proven to be appropriate for the isolation, separation, screening, identification and quantification of the drugs mentioned above in plasma for clinical toxicology, e.g. in cases of poisoning, and forensic toxicology, e.g. in cases of driving under the influence of drugs. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Validated assay for quantification of oxcarbazepine and its active dihydro metabolite 10-hydroxycarbazepine in plasma by atmospheric pressure chemical ionization liquid chromatography/mass spectrometry

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 7 2002
    Hans H. Maurer
    Abstract Oxcarbazepine (OX), a new antiepileptic, may lead to unwanted side-effects or even life-threatening intoxications after overdose. Therefore, a validated liquid chromatographic/mass spectrometric (LC/MS) assay was developed for the quantification of OX and its pharmacologically active dihydro metabolite (dihydrooxcarbazepine, DOX, often named 10-hydroxycarbazepine). OX and DOX were extracted from plasma by the authors' standard liquid/liquid extraction and were separated on a Merck LiChroCART column with Superspher 60 RP Select B as the stationary phase. Gradient elution was performed using aqueous ammonium formate and acetonitrile. The compounds were quantified in the selected-ion monitoring mode using atmospheric pressure chemical ionization electrospray LC/MS. The assay was fully validated. It was found to be selective. The calibration curves were linear from 0.1 to 50 mg l,1 for OX and DOX. Limits of quantification were 0.1 mg l,1 for OX and DOX. The absolute recoveries were between 60 and 86%. The accuracy and precision data were within the required limits. The analytes in frozen plasma samples were stable for at least 1 month. The method was successfully applied to several authentic plasma samples from patients treated or intoxicated with OX. The measured therapeutic plasma levels ranged from 1 to 2 mg l,1 for OX and from 10 to 40 mg l,1 for DOX. The validated LC/MS assay proved to be appropriate for quantification of OX and DOX in plasma for clinical toxicology and therapeutic drug monitoring purposes. The assay is part of a general analysis procedure for the isolation, separation and quantification of various drugs and for their full-scan screening and identification. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Liquid chromatographic/mass spectrometric assay of rabprazole in dog plasma for a pharmacokinetic study

    BIOMEDICAL CHROMATOGRAPHY, Issue 11 2006
    Shao Feng
    Abstract In order to evaluate the pharmacokinetic (PK) profile of rabeprazole (RA) sterile powder for injection, a rapid, sensitive and specific assay for quantitative determination of RA in dog plasma was developed and validated. After a liquid,liquid extraction procedure, samples were analyzed by liquid chromatography,electrospray ionization mass spectrometry (LC-ESI-MS) using omepazole as the internal standard (IS). The analyte and IS was chromatographed on a ZORBAX Extend-C18 analytical column (50 × 2 mm i.d, 5 µm, Agilent Technologies, USA). The assay was linear in the range 1,2000 ng/mL. The lower limit of quantification of RA was 1 ng/mL. The recovery of RA was greater than 70%. The within- and between-batch accuracy was 102.7,107.4% and 103.5,105.7%, respectively. The plasma samples for the PK study were collected at defined time points during and after an intravenous injection (1 mg/kg) to beagle dogs and analyzed by LC-ESI-MS method. The PK parameters, such as half-life, volume of distribution, total clearance and elimination rate constant, were determined. The PK profile of RA gave insights into the application in the clinics. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Clenbuterol in the horse: urinary concentrations determined by ELISA and GC/MS after clinical doses

    JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 1 2001
    J. D. Harkins
    Clenbuterol is a ,2 agonist/antagonist bronchodilator marketed as Ventipulmin® and is the only member of this group of drugs approved by the US Food and Drug Administration (FDA) for use in horses. Clenbuterol is a class 3 drug in the Association of Racing Commissioners International (ARCI) classification system; therefore, its identification in postrace samples may lead to sanctions. Recently, the sensitivity of postrace testing for clenbuterol has been substantially increased. The objective of this study was to determine the ,detection times' for clenbuterol after administration of an oral clinical dose (0.8 g/kg, b.i.d.) of Ventipulmin syrup. Five horses received oral clenbuterol (0.8 g/kg, b.i.d.) for 10 days, and urine concentrations of clenbuterol were determined by an enhanced enzyme-linked immunoabsorbent assay (ELISA) test and gas chromatography/mass spectrometric (GC/MS) analysis by two different methods for 30 days after administration. Twenty-four hours after the last administration, urine concentrations of apparent clenbuterol, as measured by ELISA, averaged about 500 ng/mL, dropping to about 1 ng/mL by day 5 posttreatment. However, there was a later transient increase in the mean concentrations of apparent clenbuterol in urine, peaking at 7 ng/mL on day 10 postadministration. The urine samples were also analysed using mass spectral quantification of both the trimethylsilyl (TMS) and methane boronic acid (MBA) derivatives of clenbuterol. Analysis using the TMS method showed that, at 24 h after the last administration, the mean concentration of recovered clenbuterol was about 22 ng/mL. Thereafter, clenbuterol concentrations fell below the limit of detection of the TMS-method by day 5 after administration but became transiently detectable again at day 10, with a mean concentration of about 1 ng/mL. Derivatization with MBA offers significant advantages over TMS for the mass spectral detection of clenbuterol, primarily because MBA derivatization yields a high molecular weight base peak of 243 m/z, which is ideal for quantitative purposes. Therefore, mass spectral analyses of selected urine samples, including the transient peak on day 10, were repeated using MBA derivatization, and comparable results were obtained. The results show that clenbuterol was undetectable in horse urine by day 5 after administration. However, an unexpected secondary peak of clenbuterol was observed at day 10 after administration that averaged ,1 ng/mL. Because of this secondary peak, the detection time for clenbuterol (0.8 g/kg, b.i.d. × 10 days) is at least 11 days if the threshold for detection is set at 1 ng/mL. [source]


    High-performance liquid chromatography/mass spectrometric and proton nuclear magnetic resonance spectroscopic studies of the transacylation and hydrolysis of the acyl glucuronides of a series of phenylacetic acids in buffer and human plasma

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2010
    Elin S. Karlsson
    The use of high-performance liquid chromatography/mass spectrometry (HPLC/MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy for the kinetic analysis of acyl glucuronide (AG) isomerisation and hydrolysis of the 1-,- O -acyl glucuronides (1-,- O -AG) of phenylacetic acid, (R)- and (S)-,-methylphenylacetic acid and ,,,-dimethylphenylacetic acid is described and compared. Each AG was incubated in both aqueous buffer, at pH 7.4, and control human plasma at 37°C. Aliquots of these incubations, taken throughout the reaction time-course, were analysed by HPLC/MS and 1H NMR spectroscopy. In buffer, transacylation reactions predominated, with relatively little hydrolysis to the free aglycone observed. In human plasma incubations the calculated rates of reaction were much faster than for buffer and, in contrast to the observations in buffer, hydrolysis to the free aglycone was a significant contributor to the overall reaction. A diagnostic analytical methodology based on differential mass spectrometric fragmentation of 1-, -O- AGs compared to the 2-, 3- and 4-positional isomers, which enables selective determination of the former, was confirmed and applied. These findings show that HPLC/MS offers a viable alternative to the more commonly used NMR spectroscopic approach for the determination of the transacylation and hydrolysis reactions of these AGs, with the major advantage of having the capability to do so in a complex biological matrix such as plasma. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Use of activated graphitized carbon chips for liquid chromatography/mass spectrometric and tandem mass spectrometric analysis of tryptic glycopeptides

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 4 2009
    William R. Alley Jr.
    Protein glycosylation has a significant medical importance as changes in glycosylation patterns have been associated with a number of diseases. Therefore, monitoring potential changes in glycan profiles, and the microheterogeneities associated with glycosylation sites, are becoming increasingly important in the search for disease biomarkers. Highly efficient separations and sensitive methods must be developed to effectively monitor changes in the glycoproteome. These methods must not discriminate against hydrophobic or hydrophilic analytes. The use of activated graphitized carbon as a desalting media and a stationary phase for the purification and the separation of glycans, and as a stationary phase for the separation of small glycopeptides, has previously been reported. Here, we describe the use of activated graphitized carbon as a stationary phase for the separation of hydrophilic tryptic glycopeptides, employing a chip-based liquid chromatographic (LC) system. The capabilities of both activated graphitized carbon and C18 LC chips for the characterization of the glycopeptides appeared to be comparable. Adequate retention time reproducibility was achieved for both packing types in the chip format. However, hydrophilic glycopeptides were preferentially retained on the activated graphitized carbon chip, thus allowing the identification of hydrophilic glycopeptides which were not effectively retained on C18 chips. On the other hand, hydrophobic glycopeptides were better retained on C18 chips. Characterization of the glycosylation sites of glycoproteins possessing both hydrophilic and hydrophobic glycopeptides is comprehensively achieved using both media. This is feasible considering the limited amount of sample required per analysis (<1,pmol). The performance of both media also appeared comparable when analyzing a four-protein mixture. Similar sequence coverage and MASCOT ion scores were observed for all proteins when using either stationary phase. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Computer-assisted interpretation of atmospheric pressure chemical ionization mass spectra of triacylglycerols

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 23 2006
    Josef Cva
    Current lipidomics approaches require simple and rapid algorithms enabling the interpretation of mass spectra of lipids. Most lipids are complex mixtures of related components in which the composition of the aliphatic fatty acid chains varies from one molecule to the next. Triacylglycerols (TAGs) are an example of such a lipid class. Fatty acid chains are the only parts of the molecule to change from one species to another. Fatty acids, and consequently also TAGs, can be characterized by two parameters; the number of carbon atoms and the number of double bonds. All calculations reflecting relations among ions in the spectra can be easily made using these parameters. An algorithm for the automated interpretation of TAGs from atmospheric pressure chemical ionization mass spectra (TriglyAPCI) is presented in this paper. The algorithm first identifies diacylglycerol fragments and molecular adducts. In the next step, relations among the ions are searched and possible TAG structures are suggested. Individual features of the algorithm are described in detail and the software performance is demonstrated for the liquid chromatography/mass spectrometric (LC/MS) analysis of TAGs isolated from the termite Prorhinotermes canalifrons. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Cyclodextrin-based nonaqueous electrokinetic chromatography with UV and mass spectrometric detection: Application to the impurity profiling of amiodarone,

    ELECTROPHORESIS, Issue 17 2008
    Roelof Mol
    Abstract The potential of nonaqueous electrokinetic chromatography (NAEKC) using cyclodextrins (CD) for the analysis of basic drugs and related compounds was evaluated. Both UV absorbance and mass spectrometric (MS) detection were employed. Addition of neutral CD to the NA background electrolyte did not significantly enhance the separation of a test mixture of basic drugs, and no change in selectivity was observed. In contrast, anionic single-isomer-sulfated CD strongly added to the selectivity of the NAEKC system inducing an improved resolution among the test compounds and increasing the migration time window. The applicability of the NAEKC system using anionic CD is demonstrated by the profiling of a sample of the drug amiodarone that had been stored for 1,year at room temperature. Amiodarone is poorly soluble in water. NAEKC-UV analysis indicated the presence of at least seven impurities in the amiodarone sample. In order to identify these compounds, the NAEKC system was coupled directly to electrospray ionization (ESI) ion-trap MS. The total of detected impurities increased to 12 due to the added sensitivity and selectivity of MS detection. Based on the acquired MS/MS data, three sample constituents could be identified as ,known' impurities (British Pharmacopoeia), whereas for three unknown impurities molecular structures could be proposed. Estimated limits of detection for amiodarone using the NAEKC method were 1,,g/mL with UV detection and 15,ng/mL with ESI-MS detection (full-scan). Based on relative responses, the impurity content of the stored drug substance was estimated to be 0.33 and 0.47% using NAEKC-UV and NAEKC-ESI-MS, respectively. [source]


    Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS

    ELECTROPHORESIS, Issue 22 2007
    Jing-Huan Chen
    Abstract A CE-inductively coupled plasma mass spectrometric (CE-ICP-MS) method for iodine and bromine speciation analysis is described. Samples containing ionic iodine (I, and IO3,) and bromine (Br, and BrO3,) species are subjected to electrophoretic separation before injection into the microconcentric nebulizer (CEI-100). The separation has been achieved in a 50,cm length×75,,m id fused-silica capillary. The electrophoretic buffer used is 10,mmol/L Tris (pH,8.0), while the applied voltage is set at ,8,kV. Detection limits are 1 and 20,50,ng/mL for various I and Br compounds, respectively, based on peak height. The RSD of the peak areas for seven injections of 0.1,,g/mL I,, IO3, and 1,,g/mL Br,, BrO3, mixture is in the range of 3,5%. This method has been applied to determine various iodine and bromine species in NIST SRM 1573a Tomato Leaves reference material and a salt and seaweed samples obtained locally. A microwave-assisted extraction method is used for the extraction of these compounds. Over 87% of the total iodine and 83% of the total bromine are extracted using a 10% m/v tetramethylammonium hydroxide (TMAH) solution in a focused microwave field within a period of 10,min. The spike recoveries are in the range of 94,105% for all the determinations. The major species of iodine and bromine in tomato leaves, salt, and seaweed are Br,, IO3,, I,, and Br,, respectively. [source]


    Determination of bupivacaine and metabolites in rat urine using capillary electrophoresis with mass spectrometric detection

    ELECTROPHORESIS, Issue 14 2003
    Ryan M. Krisko
    Abstract A method using capillary electrophoresis-mass spectrometry (CE-MS) was developed for the structural elucidation of bupivacaine and metabolites in rat urine. Prior to CE-MS analysis, solid-phase extraction (SPE) was used for sample cleanup and preconcentration purposes. Exact mass and tandem mass spectrometric (MS/MS) experiments were performed to obtain structural information about the unknown metabolites. Two instruments with different mass analyzers were used for mass spectrometric detection. A quadrupole time-of-flight (Q-TOF) and a magnetic sector hybrid instrument were coupled to CE and used for the analysis of urine extracts. Hydroxybupivacaine as well as five other isomerically different metabolites were detected including methoxylated bupivacaine. [source]


    Ultra-trace analysis of multiple endocrine-disrupting chemicals in municipal and bleached kraft mill effluents using gas chromatography,high-resolution mass spectrometry

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2008
    Michael G. Ikonomou
    Abstract A comprehensive gas chromatographic,high-resolution mass spectrometric (GC-HRMS),based method was developed that permitted the simultaneous determination of 30 estrogenic endocrine-disrupting chemicals (EDCs) and related compounds, including surfactants, biogenic and synthetic steroids, fecal sterols, phytoestrogens, and plasticizers, in wastewater. Features of the method include low sample volume (,40 ml), optimized Florisil® cleanup to minimize matrix interferences and optimized analyte derivatization to improve sensitivity via GC-HRMS. Detection limits were in the low- to mid-ng/L range, and recoveries were greater than 60% for most target analytes. This new method allows for high throughput analysis of many organic wastewater contaminants in a complex matrix with relative standard deviation of less than 15% for most measurable compounds. The applicability of the method was demonstrated by examining wastewater samples from different origins. Compounds such as di(2-ethylhex-yl)phthalate, cholesterol, cholestanol, and other cholesterol derivatives were measured in much higher concentrations in untreated sewage and were reduced substantially in concentration by the treatment process. However, steroidal compounds, particularly estrone (E1), 17,-estradiol (E2), and estriol (E3), as well as plant sterols (except stigmastanol), were greater in the treated municipal wastewater versus the untreated effluent. Plant and fungi sterols, stigmastanol and ergosterol, were found largely associated with bleached kraft mill effluent (BKME) as compared to the municipal effluents. [source]


    Bulky Pyrazolate-Based Compartmental Ligand Scaffolds: Encapsulation of an Edge-Sharing Cu6O2 Bitetrahedral Core,

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 34 2008
    Anna Sachse
    Abstract Upon reaction with Cu(OAc)2·H2O, pyrazole-based ligands with two appended imine chelate arms in the 3- and 5-positions of the pyrazole and bulky substituents at the imine-N yield Cu6 complexes [L2Cu6(,-OAc)6(,4 -O)2] (1a,b). They feature an unusual {Cu6(,4 -O)2}-bitetrahedral core, only the second example of this structural motif. ESI mass spectrometric and UV/Vis data confirm that the Cu6 complexes stay intact in solution, and magnetic and high-field EPR measurements reveal an S = 0 ground state with the first excited triplet at ,E , 95 cm,1. Although the new hexanuclear systems are too complex for deriving all individual exchange constants from powder susceptibility data, a rough idea of the complete energy level spectrum could be obtained.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


    Reactions of the Aluminum(I) Monomer LAl [L = HC{(CMe)(NAr)}2; Ar = 2,6- iPr2C6H3] with Imidazol-2-ylidene and Diphenyldiazomethane.

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 20 2004
    A Hydrogen Transfer from the L Ligand to the Central Aluminum Atom, Formation of the Diiminylaluminum Compound LAl(N=CPh2)
    Abstract The solid-state reaction of LAl and imidazol-2-ylidene at elevated temperature (120 °C) yielded the aluminum monohydride N -heterocyclic carbene adduct [{HC[C(CH2)NAr] (CMeNAr)}AlH-{CN(R)C2Me2N(R)}] [R = iPr (1), Me (2)]. Compounds 1 and 2 have been characterized by spectroscopic (IR, and 1H and 13C NMR), mass spectrometric, and elemental analyses, and 1 was further characterized by X-ray structural analysis. These experimental data indicate that the Al,H bond is formed by hydrogen migration from one of the methyl groups of the ,-diketiminato ligand backbone. The reaction of LAl with two equivalents of diphenyldiazomethane afforded the diiminylaluminum compound LAl(N=CPh2)2 (3), while an excess of diphenyldiazomethane resulted in the formation of Ph2C=N,N=CPh2. This suggests that Ph2C=N,N=CPh2 is initially generated and then reacts further by oxidative addition to yield 3. The X-ray structural analysis reveals that compound 3 contains the shortest Al,Niminyl bond among those with a four-coordinate aluminum center. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


    The Synthesis and Reactivity of Group 4 Zwitterionic Complexes of the Type Mt+CH2AlCl3,: One-Component Stereoselective Polymerization and Oligomerization Catalysts for Olefins and Acetylenes

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 15 2004
    John J. Eisch
    Abstract A reinvestigation of the interaction of TiCl4 with 2 equiv. of Me3Al in toluene between ,78 °C and 25 °C over 24 h has now established that the ultimate black product obtained is an associated zwitterion of the type [Ti+,CH2,AlCl3,]n, supported by multinuclear NMR spectroscopy and mass spectrometric and gasometric analyses of the gases evolved (CH4, H2) upon its protolysis. Chemical reactions of the zwitterion have corroborated specific aspects of its proposed structure: 1) its methylene character, by its transformation of benzophenone into 1,1-diphenylethylene; 2) its divalent titanium content, by the substantial reductive dimerization of benzophenone to tetraphenylethylene, and 3) its Lewis acidic Ti center, by its catalytic isomerization of trans -stilbene oxide to 1,1-diphenylacetaldehyde. Similar individual reactions of ZrCl4 or HfCl4 with Me3Al have led to the analogous zwitterions [Zr+,CH2,AlCl3,]n and [Hf+,CH2,AlCl3,]n, respectively. These zwitterions of Ti, Zr and Hf have been proven to be capable of the cyclotrimerization and/or polymerization of acetylenes with varying facility, as evidenced by their catalytic action on 1-hexyne, phenylacetylene, di- n -butylacetylene, and diphenylacetylene. Furthermore, all three zwitterions were able to polymerize ethylene, without any added cocatalyst, with an activity following the order Zr > Ti > Hf. The Ti and Zr zwitterions effected the stereoselective polymerization of propylene to yield 50% of isotactic polymer, and all three catalysts induced the polymerization of 1-hexene to yield 85% (Zr, Hf) or 100% (Ti) of isotactic polymer. These oligomerizations and stereoselective polymerizations of acetylenes and olefins can be rationalized through a model for the active site resembling a three-membered metallacyclopropa(e)nium ion intermediate formed from the attack of the Group 4 metal zwitterion on the unsaturated hydrocarbon. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


    A selective and sensitive approach to characterize odour-active and volatile constituents in small-scale human milk samples

    FLAVOUR AND FRAGRANCE JOURNAL, Issue 6 2007
    Andrea Buettner
    Abstract A sensitive and selective analytical approach was developed for the characterization of trace volatile and odorous substances in body fluids. The methodology was successfully applied for identification of more than 40 characteristic odorants in human milk. The technique comprises a modified stir bar sorptive extraction system in combination with two-dimensional gas chromatographic separation and parallel mass spectrometric and olfactometric characterization of the analytes. The present study shows that the technique can be used for both direct extractive sampling and headspace analysis, and that it is applicable for small sample volumes. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    The study of the aroma profile characteristics of durian pulp during storage by the combination sampling method coupled with GC,MS

    FLAVOUR AND FRAGRANCE JOURNAL, Issue 1 2007
    Zhuo-Min Zhang
    Abstract In this study, a combination sampling method, including headspace solid-phase micro-extraction (HSSPME), simultaneous distillation extraction (SDE) and steam distillation (SD), were used to study the aroma profile characteristics of durian (Durio zibethinus Murr.) pulp during storage, followed by gas chromatography,mass spectrometric (GC,MS) detection; 26 and 22 aroma volatiles of fresh and deteriorated durian pulps were identified according to different degrees of certainty. Volatile esters were identified as the main aromatic components of durian pulp. Most ethyl esters reduced in concentration during storage, whereas the methyl, propyl and butyl esters increased. Different aroma profile characteristics at the fresh and deteriorated storage phases obtained by HSSPME were specified by principal component analysis (PCA). Five typical aroma volatiles contributing greatly to the difference of aroma profile characteristics of durian pulp at the fresh and deteriorated storage phases were distilled by common model strategy. These compounds are potential bio-markers for durian degradation, but further study is needed. Tentative results suggest that combining HSSPME with conventional volatile isolation methods would yield more representative data on changes in the aroma of durian pulp during storage. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    High-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry for the determination of flocoumafen and brodifacoum in whole blood

    JOURNAL OF APPLIED TOXICOLOGY, Issue 1 2007
    Mi-cong Jin
    Abstract A high-performance liquid chromatographic,tandem mass spectrometric (HPLC,MS,MS) assay was developed and validated to determine quantitatively flocoumafen and brodifacoum in whole blood using warfarin as an internal standard (IS). Liquid,liquid extraction, using ethyl acetate, was used to isolate flocoumafen, brodifacoum and the IS from the biological matrix. Detection was performed on a mass spectrometer by negative electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode. The calibration curves were linear (r2 > 0.998) in the concentration range of 0.1,100.0 ng ml,1 with a lower limit of quantification of 0.05 ng ml,1 for flocoumafen, and 0.1 ng ml,1 for brodifacoum in whole blood. Intra-day and inter-day relative standard deviations (RSDs) were less than 8.0% and 10.8%, respectively. Recoveries of flocoumafen and brodifacoum ranged from 78.0% to 83.7%. This assay can be used to determine trace flocoumafen and brodifacoum in whole blood to investigate suspected poisoning of human and animals. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Gas phase isomeric differentiation of oleanolic and ursolic acids associated with heptakis-(2,6-di- O -methyl)-,-cyclodextrin by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2010
    Zhan Yu
    Abstract Oleanolic acid (OA) and ursolic acid (UA) are isomeric triterpenoid compounds with similar pharmaceutical properties. Usually, modern chromatographic and electrophoretic methods are widely utilized to differentiate these two compounds. Compared with mass spectrometric (MS) methods, these modern separation methods are both time- and sample-consuming. Herein, we present a new method for structural differentiation of OA and UA by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with the association of heptakis-(2,6-di- O -methyl)-,-cyclodextrin (DM-,-CD). Exact MS and tandem MS (MS/MS) data showed that there is no perceptible difference between OA and UA, as well as their ,-cyclodextrin and ,-cyclodextrin complexes. However, there is a remarkable difference in MS/MS spectra of DM-,-CD complexes of OA and UA. The peak corresponding to the neutral loss of a formic acid and a water molecule could only be observed in the MS/MS spectrum of the complex of DM-,-CD : OA. Molecular modeling calculations were also employed to further investigate the structural differences of DM-,-CD : OA and DM-,-CD : UA complexes. Therefore, by employing DM-,-CD as a reference reagent, OA and UA could be differentiated with purely MS method. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Ion chemistry in germane/fluorocompounds gaseous mixtures: a mass spectrometric and theoretical study

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 10 2008
    Paola Antoniotti
    Abstract The ion,molecule reactions occurring in GeH4/NF3, GeH4/SF6, and GeH4/SiF4 gaseous mixtures have been investigated by ion trap mass spectrometry and ab initio calculations. While the NFx+ (x = 1,3) react with GeH4 mainly by the exothermic charge transfer, the open-shell Ge+ and GeH2+ undergo the efficient F-atom abstraction from NF3 and form GeF+ and FGeH2+ as the only ionic products. The mechanisms of these two processes are quite similar and involve the formation of the fluorine-coordinated complexes GeFNF2+ and H2GeFNF2+, their subsequent crossing to the significantly more stable isomers FGeNF2+ and FGeH2NF2+, and the eventual dissociation of these ions into GeF+ (or FGeH2+) and NF2. The closed-shell GeH+ and GeH3+ are instead much less reactive towards NF3, and the only observed process is the less efficient formation of GeF+ from GeH+. The theoretical investigation of this unusual H/F exchange reaction suggests the involvement of vibrationally-hot GeH+. Passing from NF3 to SF6 and SiF4, the average strength of the MF bond increases from 70 to 79 and 142 kcal mol,1, and in fact the only process observed by reacting GeHn+ (n = 0,3) with SF6 and SiF4 is the little efficient F-atom abstraction from SF6 by Ge+. Irrespective of the experimental conditions, we did not observe any ionic product of GeN, GeS, or GeSi connectivity. This is in line with the previously observed exclusive formation of GeF+ from the reaction between Ge+ and CF compounds such as CH3F. Additionally observed processes include in particular the conceivable formation of the elusive thiohypofluorous acid FSH from the reaction between SF+ and GeH4. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Discrimination and identification of the six aromatic positional isomers of trimethoxyamphetamine (TMA) by gas chromatography-mass spectrometry (GC-MS)

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2008
    Kei Zaitsu
    Abstract A reliable and accurate GC-MS method was developed that allows both mass spectrometric and chromatographic discrimination of the six aromatic positional isomers of trimethoxyamphetamine (TMA). Regardless of the trifluoroacetyl (TFA) derivatization, chromatographic separation of all the investigated isomers was achieved by using DB-5ms capillary columns (30 m × 0.32 mm i.d.), with run times less than 15 min. However, the mass spectra of the nonderivatized TMAs, except 2,4,6-trimethoxyamphetmine (TMA-6), showed insufficient difference for unambiguous discrimination. On the other hand, the mass spectra of the TFA derivatives of the six isomers exhibited fragments with significant intensity differences, which allowed the unequivocal identification of all the aromatic positional isomers investigated in the present study. This GC-MS technique in combination with TFA derivatization, therefore, is a powerful method to discriminate these isomers, especially useful to distinguish the currently controlled 3,4,5-trimethoxyamphetmine (TMA-1) and 2,4,5-trimethoxyamphetmine (TMA-2) from other uncontrolled TMAs. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Combination of liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry for the detection of 21 anabolic steroid residues in bovine urine

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2005
    Christof Van Poucke
    Abstract For the detection of anabolic steroid residues in bovine urine, a highly sensitive liquid chromatographic/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method was developed using both positive and negative ionization. For four compounds the ESI mode was not sensitive enough and gas chromatographic/mass spectrometric GC/MS detection was therefore still necessary as a complementary method. The sample clean-up consisted of solid-phase extraction (SPE) on a C18 column followed by enzymatic hydrolysis and a second solid-phase extraction on a combination of a C18 and a NH2 column. After this last SPE clean-up, the eluate was split into two equal aliquots. One aliquot was further purified and after derivatization used for GC/MS analysis. The other aliquot was analyzed with LC/MS/MS in both ESI+ and ESI, modes. The method was validated according to the European Commission Decision 2002/657/EC. Decision limits (CC,) were between 0.16 and 1 ng ml,1 for the compounds detected with the LC/MS/MS method. The developed method is used in routine analysis in our laboratory. Copyright © 2005 John Wiley & Sons, Ltd. [source]