Mass Resolution (mass + resolution)

Distribution by Scientific Domains

Kinds of Mass Resolution

  • high mass resolution


  • Selected Abstracts


    High-Resolution LA-ICP-MS for Accurate Determination of Low Abundances of K, Sc and Other Trace Elements in Geological Samples

    GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 1 2010
    Julia Regnery
    LA-ICP-MS; haute résolution de masses; matériaux géologiques de référence; verres MPI-DING Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine K, Sc, Ti, V, Cr, Mn, Co, Ni and Zn in geological samples. Because the isotopes of these elements and the internal standard element (Ca) often have interferences from molecular ions when determined using quadrupole or sector-field ICP-MS in low mass resolution mode, ion intensities were measured at a high mass resolution of 4000. We investigated dynamic element fractionation, type and abundance of molecular ions using different geological reference materials. Highly resolved mass spectra were especially important for accurate low-abundance measurements. As a result, maximum "critical" concentration limits for each isotope were obtained, where a mass resolution of 4000 was necessary for reliable LA-ICP-MS analysis. To test the LA-ICP-MS technique, different international reference material glasses and powdered rock reference materials were analysed. Rock powders were fused to glass beads using an Ir-strip heater. Nearly all concentration values for the reference materials agreed with the reference values at the 95% confidence level. To demonstrate routine LA-ICP-MS analysis at a mass resolution of 4000, trace element data for Hawaiian basalts are also presented. La technique de spectrométrie de masse couplée à un plasma inductif et associée à un système d'ablation laser (LA-ICP-MS) a été utilisée pour la détermination des concentrations en K, Sc, Ti, V, Cr, Mn, Co, Ni and Zn dans des échantillons géologiques. Parce que les isotopes de ces éléments et l'élément utilisé comme standard interne (Ca) ont souvent des interférences liées à la formation d'ions moléculaires lorsqu'ils sont analysés par les techniques d'ICP-MS quadripolaire ou à secteur magnétique en mode basse résolution de masses, les intensités des ions ont été mesurées en mode haute résolution de masses de 4000. Nous avons étudié le fractionnement dynamique des éléments, le type et l'abondance des ions moléculaires en utilisant différents matériaux géologiques de référence. Les spectres de masse de haute résolution ont été particulièrement importants pour les mesures précises des faibles abondances. En conséquence, les limites maximales de concentration critique pour chaque isotope ont été obtenues, dans les cas où une résolution de masse de 4000 était nécessaire pour obtenir des analyses LA-ICP-MS fiables. Pour tester la technique LA-ICP-MS proposée, différents verres et poudres de matériaux de référence internationaux ont été analysés. Les poudres de roche ont été transformées en billes de verre par fusion dans un four automatique à chauffage par filament d'iridium. Presque toutes les concentrations obtenues pour les matériaux de référence sont en accord avec les valeurs de référence de la littérature à un niveau de confiance de 95%. Pour démontrer que la méthode présentée de LA-ICP-MS à résolution de masses de 4000 peut s'utiliser en routine, nous présentons également des données d'éléments traces de basaltes Hawaïens. [source]


    Influence on mass-selective ion ejection of the phase difference between the drive r.f. and the axial modulation potentials

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2005
    G. Dobson
    Abstract The phase difference between the drive r.f. and the axial modulation potential is known to influence significantly the mass shift, and all commercial ion trap mass spectrometers use a fixed value for this difference. However, although this important parameter is partly responsible for the good precision achievable today in most commercial ion traps, little discussion on the variation of the phase difference between the drive r.f. and the axial modulation potential has appeared in the literature. We present here an examination of the influence of a low-level axial modulation potential superimposed by capacitive coupling between the electrodes. Low-level axial modulation potentials are used for certain analytical scans such as reverse scan or slow scan speeds. Such low-level potentials help to prevent deterioration of mass resolution due to, for example, the dissociation of the ions during their resonant ejection from the ion trap. Reverse and forward scans are used to illustrate the mass shift and change in resolution, caused by a change in the phase difference between the drive r.f. potential applied to the ring electrode and the axial modulation potential applied on an end-cap electrode, in electrospray ionization mass spectra. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    The Orbitrap: a new mass spectrometer

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2005
    Qizhi Hu
    Abstract Research areas such as proteomics and metabolomics are driving the demand for mass spectrometers that have high performance but modest power requirements, size, and cost. This paper describes such an instrument, the Orbitrap, based on a new type of mass analyzer invented by Makarov. The Orbitrap operates by radially trapping ions about a central spindle electrode. An outer barrel-like electrode is coaxial with the inner spindlelike electrode and mass/charge values are measured from the frequency of harmonic ion oscillations, along the axis of the electric field, undergone by the orbitally trapped ions. This axial frequency is independent of the energy and spatial spread of the ions. Ion frequencies are measured non-destructively by acquisition of time-domain image current transients, with subsequent fast Fourier transforms (FFTs) being used to obtain the mass spectra. In addition to describing the Orbitrap mass analyzer, this paper also describes a complete Orbitrap-based mass spectrometer, equipped with an electrospray ionization source (ESI). Ions are transferred from the ESI source through three stages of differential pumping using RF guide quadrupoles. The third quadrupole, pressurized to less than 10,3 Torr with collision gas, acts as an ion accumulator; ion/neutral collisions slow the ions and cause them to pool in an axial potential well at the end of the quadrupole. Ion bunches are injected from this pool into the Orbitrap analyzer for mass analysis. The ion injection process is described in a simplified way, including a description of electrodynamic squeezing, field compensation for the effects of the ion injection slit, and criteria for orbital stability. Features of the Orbitrap at its present stage of development include high mass resolution (up to 150 000), large space charge capacity, high mass accuracy (2,5 ppm), a mass/charge range of at least 6000, and dynamic range greater than 10.3 Applications based on electrospray ionization are described, including characterization of transition-metal complexes, oligosaccharides, peptides, and proteins. Use is also made of the high-resolution capabilities of the Orbitrap to confirm the presence of metaclusters of serine octamers in ESI mass spectra and to perform H/D exchange experiments on these ions in the storage quadrupole. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    High mass accuracy in-source collision-induced dissociation tandem mass spectrometry and multi-step mass spectrometry as complementary tools for fragmentation studies of quaternary ammonium herbicides

    JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 8 2004
    Oscar Núñez
    Abstract Fragmentation studies using both an ion-trap mass analyzer and a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer were performed in order to establish the fragmentation pathways of organic molecules. A general strategy combining MSn data (n = 1,4) in an ion-trap analyzer with tandem mass spectrometry and in-source collision-induced dissociation tandem mass spectrometry (CID MS/MS) in a Q-TOF instrument was applied. The MSn data were used to propose a tentative fragmentation pathway following genealogical relationships. When several assignments were possible, MS/MS and in-source CID MS/MS (Q-TOF) allowed the elemental compositions of the fragments to be confirmed. Quaternary ammonium herbicides (quats) were used as test compounds and their fragmentation pathways were established. The elemental composition of the fragments was confirmed using the TOF analyzer with relative errors <0.0023 Da. Some fragments previously reported in the literature were reassigned taking advantage of the high mass resolution and accuracy of the Q-TOF instrument, which made it possible to solve losses where nitrogen was involved. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    The halo mass function from the dark ages through the present day

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2007
    Darren S. Reed
    ABSTRACT We use an array of high-resolution N -body simulations to determine the mass function of dark matter haloes at redshifts 10,30. We develop a new method for compensating for the effects of finite simulation volume that allows us to find an approximation to the true ,global' mass function. By simulating a wide range of volumes at different mass resolution, we calculate the abundance of haloes of mass 105,12 h,1 M,. This enables us to predict accurately the abundance of the haloes that host the sources that reionize the Universe. In particular, we focus on the small mass haloes (,105.5,6 h,1 M,) likely to harbour Population III stars where gas cools by molecular hydrogen emission, early galaxies in which baryons cool by atomic hydrogen emission at a virial temperature of ,104K (,107.5,8 h,1 M,), and massive galaxies that may be observable at redshift ,10. When we combine our data with simulations that include high-mass haloes at low redshift, we find that the best fit to the halo mass function depends not only on the linear overdensity, as is commonly assumed in analytic models, but also on the slope of the linear power spectrum at the scale of the halo mass. The Press,Schechter model gives a poor fit to the halo mass function in the simulations at all epochs; the Sheth-Tormen model gives a better match, but still overpredicts the abundance of rare objects at all times by up to 50 per cent. Finally, we consider the consequences of the recently released WMAP 3-yr cosmological parameters. These lead to much less structure at high redshift, reducing the number of z= 10,mini-haloes' by more than a factor of two and the number of z= 30 galaxy hosts by nearly four orders of magnitude. Code to generate our best-fitting halo mass function may be downloaded from http://icc.dur.ac.uk/Research/PublicDownloads/genmf_readme.html. [source]


    galics, V: Low- and high-order clustering in mock Sloan Digital Sky Surveys

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
    Jérémy Blaizot
    ABSTRACT We use the galics hybrid model of galaxy formation to explore the nature of galaxy clustering in the local Universe. We bring the theoretical predictions of our model into the observational plane using the momaf software to build mock catalogues which mimic Sloan Digital Sky Survey (SDSS) observations. We measure low- and high-order angular clustering statistic from these mock catalogues, after selecting galaxies the same way as for observations, and compare them directly to estimates from the SDSS data. Note that we also present the first measurements of high-order statistics on the SDSS DR1. We find that our model is in general good agreement with observations in the scale/luminosity range where we can trust the predictions. This range is found to be limited (i) by the size of the dark matter simulation used , which introduces finite volume effects at large scales , and by the mass resolution of this simulation , which introduces incompleteness at apparent magnitudes fainter than r, 20. We then focus on the small-scale clustering properties of galaxies and investigate the behaviour of three different prescriptions for positioning galaxies within haloes of dark matter. We show that galaxies are poor tracers of either DM particles or DM substructures, within groups and clusters. Instead, SDSS data tells us that the distribution of galaxies lies somewhat in between these two populations. This confirms the general theoretical expectation from numerical simulations and semi-analytic modelling. [source]


    Strategy for the elucidation of elemental compositions of trace analytes based on a mass resolution of 100 000 full width at half maximum

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2010
    Anton Kaufmann
    Elemental compositions (ECs) can be elucidated by evaluating the high-resolution mass spectra of unknown or suspected unfragmented analyte ions. Classical approaches utilize the exact mass of the monoisotopic peak (M,+,0) and the relative abundance of isotope peaks (M,+,1 and M,+,2). The availability of high-resolution instruments like the Orbitrap currently permits mass resolutions up to 100 000 full width at half maximum. This not only allows the determination of relative isotopic abundances (RIAs), but also the extraction of other diagnostic information from the spectra, such as fully resolved signals originating from 34S isotopes and fully or partially resolved signals related to 15N isotopes (isotopic fine structure). Fully and partially resolved peaks can be evaluated by visual inspection of the measured peak profiles. This approach is shown to be capable of correctly discarding many of the EC candidates which were proposed by commercial EC calculating algorithms. Using this intuitive strategy significantly extends the upper mass range for the successful elucidation of ECs. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    On the high-resolution mass analysis of the product ions in tandem time-of-flight (TOF/TOF) mass spectrometers using a time-dependent re-acceleration technique

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 1 2010
    Sergey Kurnosenko
    The time-dependent reacceleration of product ions produced as a result of dissociation of a single precursor ion in a tandem time-of-flight mass spectrometer is considered for the first time. Analytical expressions for the shapes of electric pulses bringing all the kinetic energies of the product ions to the same value are derived for two cases: forward acceleration mode and deceleration, followed by re-acceleration in the reversed direction (reversed mode). Secondary time-of-flight focusing resulting from the re-acceleration in the reversed mode is shown to be mass-dependent and, when averaged over a wide mass range, the focusing is tight enough to provide mass resolution exceeding 10,000. After time-dependent re-acceleration, additional compression of the ion packet width leading to better mass resolution can be obtained by decelerating the ions in a constant field. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    An integrated serum proteomic approach capable of monitoring the low molecular weight proteome with sequencing of intermediate to large peptides

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2009
    Karen Merrell
    The low-abundance, low molecular weight serum proteome has high potential for the discovery of new biomarkers using mass spectrometry (MS). Because the serum proteome is large and complex, defining relative quantitative differences for a molecular species between comparison groups requires an approach with robust separation capability, high sensitivity, as well as high mass resolution. Capillary liquid chromatography (cLC)/MS provides both the necessary separation technique and the sensitivity to observe many low-abundance peptides. Subsequent identification of potential serum peptide biomarkers observed in the cLC/MS step can in principle be accomplished by in series cLC/MS/MS without further sample preparation or additional instrumentation. In this report a novel cLC/MS/MS method for peptide sequencing is described that surpasses previously reported size limits for amino acid sequencing accomplished by collisional fragmentation using a tandem time-of-flight MS instrument. As a demonstration of the approach, two low-abundance peptides with masses of ,4000,5000,Da were selected for MS/MS sequencing. The multi-channel analyzer (MCA) was used in a novel way that allowed for summation of 120 fragmentation spectra for each of several customized collision energies, providing more thorough fragmentation coverage of each peptide with improved signal to noise. The peak list from this composite analysis was submitted to Mascot for identification. The two index peptides, 4279,Da and 5061,Da, were successfully identified. The peptides were a 39 amino acid immunoglobulin G heavy chain variable region fragment and a 47 amino acid fibrin alpha isoform C-terminal fragment. The method described here provides the ability both to survey thousands of serum molecules and to couple that with markedly enhanced cLC/MS/MS peptide sequencing capabilities, providing a promising technique for serum biomarker discovery. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Role of the support material on laser desorption/ionization mass spectra

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 7 2008
    A. Gruszecka
    We report the results of experimental studies on the effects of sample supports in laser desorption/ionization mass spectrometry (LDI-MS). LDI time-of-flight (TOF) mass spectra obtained for C60 and insulin samples deposited onto standard stainless steel substrate and/or onto some non-metallic materials (glass, scotch tape, floppy disc foil, Teflon foil, photocopy film), all recorded under identical, typical experimental conditions, have been compared with regard to their intensity and quality. The LDI investigations show that compared with stainless steel, glass and floppy disc foil sample supports boost (2,3.5 times) ion yields for C and C ions, respectively. The stainless steel and scotch tape sample supports are the best for the mass resolution of positive ions and the formation of (C60) (n,,,4) cluster ions, respectively. In the case of detection of insulin by matrix-assisted laser desorption/ionization (MALDI) we did not observe significant differences in sensitivity for the support materials tested. A mechanism of ion formation in the desorption plume is suggested. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Analysis of three different types of fullerene derivatives by laser desorption/ionization time-of-flight mass spectrometry with new matrices

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 23 2005
    Lihua Zhou
    Three different types of fullerene derivatives, namely methano[60]fullerene dicarboxylate esters, [60]fulleropyrrolidines, and imino[60]fullerenes, were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using trans -4- tert -butyl-4,-nitrostilbene (TBNS), 1,8,9-anthracenetriol (dithranol), 6-aza-2-thiothymine (ATT), 2,5-dihydroxybenzoic acid (DHB) and carbazole as matrices. Unit mass resolution (sufficient to clearly resolve isotopic peaks), high signal-to-noise ratio, and clean mass spectra for all analytes were acquired by the optimization of experimental parameters and choice of optimal solvent for the matrix and molar matrix-to-analyte ratio. The new matrix, TBNS, gave the best results in the positive-ion mode, as it can provide higher yields of analyte molecular ions at a lower laser threshold than the other four matrices, together with a very low degree of unwanted fragmentations. In the negative-ion mode dithranol was better than TBNS, and the other three matrices gave relatively poor mass spectra for these fullerene derivatives. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Nano-high-performance liquid chromatography in combination with nano-electrospray ionization Fourier transform ion-cyclotron resonance mass spectrometry for proteome analysis

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2003
    Christian Ihling
    Fourier transform ion-cyclotron resonance (FTICR) mass spectrometry offers several advantages for the analysis of biological samples, including excellent mass resolution, ultra-high mass measurement accuracy, high sensitivity, and wide mass range. We report the application of a nano-HPLC system coupled to an FTICR mass spectrometer equipped with nanoelectrospray source (nano-HPLC/nano-ESI-FTICRMS) for proteome analysis. Protein identification in proteomics is usually conducted by accurately determining peptide masses resulting from enzymatic protein digests and comparing them with theoretically digested protein sequences from databases. A tryptic in-solution digest of bovine serum albumin was used to optimize experimental conditions and data processing. Spots from Coomassie Blue and silver-stained two-dimensional (2D) gels of human thyroid tissue were excised, in-gel digested with trypsin, and subsequently analyzed by nano-HPLC/nano-ESI-FTICRMS. Additionally, we analyzed 1D-gel bands of membrane preparations of COS-6 cells from African green monkey kidney as an example of more complex protein mixtures. Nano-HPLC was performed using 1-mm reverse-phase C-18 columns for pre-concentration of the samples and reverse-phase C-18 capillary columns for separation, applying water/acetonitrile gradient elution conditions at flow rates of 200,nL/min. Mass measurement accuracies smaller than 3,ppm were routinely obtained. Different methods for processing the raw data were compared in order to identify a maximum number of peptides with the highest possible degree of automation. Parallel identification of proteins from complex mixtures down to low-femtomole levels makes nano-HPLC/nano-ESI-FTICRMS an attractive approach for proteome analysis. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Double resonance ejection in a micro ion trap mass spectrometer

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 8 2002
    Jeremy Moxom
    Ion ejection from a cylindrical micro ion trap by resonance excitation of the secular motion is observed to be strongly dependent on the frequency of the secular motion at resonance. Both the intensity of the ion signal and the mass resolution of the resulting mass spectrum are increased when the ion secular frequency is approximately that of a nonlinear resonance of the trap. The resonances are attributed to electrical as well as geometrical considerations. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Strategy for the elucidation of elemental compositions of trace analytes based on a mass resolution of 100 000 full width at half maximum

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2010
    Anton Kaufmann
    Elemental compositions (ECs) can be elucidated by evaluating the high-resolution mass spectra of unknown or suspected unfragmented analyte ions. Classical approaches utilize the exact mass of the monoisotopic peak (M,+,0) and the relative abundance of isotope peaks (M,+,1 and M,+,2). The availability of high-resolution instruments like the Orbitrap currently permits mass resolutions up to 100 000 full width at half maximum. This not only allows the determination of relative isotopic abundances (RIAs), but also the extraction of other diagnostic information from the spectra, such as fully resolved signals originating from 34S isotopes and fully or partially resolved signals related to 15N isotopes (isotopic fine structure). Fully and partially resolved peaks can be evaluated by visual inspection of the measured peak profiles. This approach is shown to be capable of correctly discarding many of the EC candidates which were proposed by commercial EC calculating algorithms. Using this intuitive strategy significantly extends the upper mass range for the successful elucidation of ECs. Copyright © 2010 John Wiley & Sons, Ltd. [source]