Home About us Contact | |||
Mass Mortality (mass + mortality)
Terms modified by Mass Mortality Selected AbstractsAssessing the long-term impact of Ranavirus infection in wild common frog populationsANIMAL CONSERVATION, Issue 5 2010A. G. F. Teacher Abstract Amphibians are declining worldwide, and one cause of this is infectious disease emergence. Mass mortalities caused by a virus or a group of viruses belonging to the genus Ranavirus have occurred in wild common frogs Rana temporaria in England since the 1980s, and ranaviral disease is widespread in amphibians in North America and Canada, where it can also cause mass die-offs. Although there have been numerous reports of Ranavirus -associated mass mortality events, no study has yet evaluated the long-term impacts of this disease. This study follows up archived records of English common frog mortalities likely caused by Ranavirus. There is a preliminary indication that common frog populations can respond differently to the emergence of disease: emergence may be transient, catastrophic, or persistent with recurrent mortality events. We subsequently focused on populations that had recurring mortality events (n=18), and we report median declines of 81% in the number of adult frogs in these populations from 1996 to 2008. Comparable uninfected populations (n=16) showed no change in population size over the same time period. Regressions show that larger frog populations may be more likely to experience larger declines than smaller populations, and linear models show that percentage population size change is significantly correlated with disease status, but that habitat age (a possible proxy for environmental quality) has no significant effect on population size change. Our results provide the first evidence of long-term localized population declines of an amphibian species which appear to be best explained by the presence of Ranavirus infection. [source] Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat waveGLOBAL CHANGE BIOLOGY, Issue 5 2009J. GARRABOU Abstract Late in summer 2003, extensive mass mortality of at least 25 rocky benthic macro-invertebrate species (mainly gorgonians and sponges) was observed in the entire Northwestern (NW) Mediterranean region, affecting several thousand kilometers of coastline. We were able to characterize the mortality event by studying six areas covering the main regions of the NW Mediterranean basin. The degree of impact on each study area was quantified at 49 sites by estimating the proportion of colonies affected in populations of several gorgonian species compared with reference data obtained in years without mortality signs. According to these data, the western areas (Catalan coast and Balearic Islands) were the least affected, while the central areas (Provence coast and Corsica-Sardinia) showed a moderate impact. The northernmost and eastern areas (Gulf of Genoa and Gulf of Naples) displayed the highest impact, with almost 80% of gorgonian colonies affected. The heat wave of 2003 in Europe caused an anomalous warming of seawater, which reached the highest temperatures ever recorded in the studied regions, between 1 and 3 °C above the climatic values (mean and maximum). Because this exceptional warming was observed in the depth ranges most affected by the mortality, it seems likely that the 2003 anomalous temperature played a key role in the observed mortality event. A correlation analysis between temperature conditions and degree of impact seems to support this hypothesis. Under the present climate warming trend, new mass mortality events may occur in the near future, possibly driving a major biodiversity crisis in the Mediterranean Sea. [source] Relating the ontogeny of functional morphology and prey selection with larval mortality in Amphiprion frenatusJOURNAL OF MORPHOLOGY, Issue 6 2010Justin Anto Abstract Survival during the pelagic larval phase of marine fish is highly variable and is subject to numerous factors. A sharp decline in the number of surviving larvae usually occurs during the transition from endogenous to exogenous feeding known as the first feeding stage in fish larvae. The present study was designed to evaluate the link between functional morphology and prey selection in an attempt to understand how the relationship influences mortality of a marine fish larva, Amphiprion frenatus, through ontogeny. Larvae were reared from hatch to 14 days post hatch (DPH) with one of four diets [rotifers and newly hatched Artemia sp. nauplii (RA); rotifers and wild plankton (RP); rotifers, wild plankton, and newly hatched Artemia nauplii (RPA); wild plankton and newly hatched Artemia nauplii (PA)]. Survival did not differ among diets. Larvae from all diets experienced mass mortality from 1 to 5 DPH followed by decreased mortality from 6 to 14 DPH; individuals fed RA were the exception, exhibiting continuous mortality from 6 to 14 DPH. Larvae consumed progressively larger prey with growth and age, likely due to age related increase in gape. During the mass mortality event, larvae selected small prey items and exhibited few ossified elements. Cessation of mass mortality coincided with consumption of large prey and ossification of key elements of the feeding apparatus. Mass mortality did not appear to be solely influenced by inability to establish first feeding. We hypothesize the interaction of reduced feeding capacities (i.e., complexity of the feeding apparatus) and larval physiology such as digestion or absorption efficiency contributed to the mortality event during the first feeding period. J. Morphol., 2010. © 2010 Wiley-Liss, Inc. [source] Edwardsiella tarda infection in Korean catfish, Silurus asotus, in a Korean fish farmAQUACULTURE RESEARCH, Issue 1 2009Jin-Ha Yu Abstract Mass mortality of Korean catfish, Silurus asotus, occurred in a culture farm situated in Jeollabukdo Province, Korea. The cumulative mortality rates reached up to 5% of the total fish in the farm per day. In clinical signs, the affected fish showed abdominal distension, vent protrusion, enteritis, liver congestion and abscess-like lesions in enlarged spleen and kidney. Histopathologically, in the liver, hepatocytes lost fat and underwent atrophy or necrosis. The spleen showed necrotized splenocytes and a haemorrhagic pulp. In the kidney, glomerular destruction, degeneration of renal tubular epithelial cell and haemorrhage were observed. However, necrotic muscular lesions were not observed. A pure bacterial isolate was obtained from the liver, spleen and kidney lesions of affected fish. Experimental infection of normal catfish with the isolate resulted in the development of clinical signs similar to those seen on the farm. The isolates were identified as Edwardsiella tarda through biochemical tests (99.4%) and analysis of bacterial genes (16S rDNA) sequences (98%). The bacteria possessed two virulent genes: sodB and katB genes. These results suggest that E. tarda can act as a pathogen of farmed catfish. This is the first report showing that E. tarda caused mortality in cultured Korean catfish. [source] Nodavirus infection of juvenile white seabass, Atractoscion nobilis, cultured in southern California: first record of viral nervous necrosis (VNN) in North AmericaJOURNAL OF FISH DISEASES, Issue 5 2001P A Curtis The viral aetiology of mass mortalities of white seabass, Atractoscion nobilis, cultured in southern California, USA was examined. Disease outbreaks occurred in juvenile fish reared at two culture facilities from June to December 1999, with clinical signs such as anorexia and erratic swimming motion. Microscopic lesions observed in moribund fish included marked vacuolation of brain, spinal cord and retina. The piscine nodavirus (Betanodavirus), the causative agent of viral nervous necrosis (VNN), was detected in the affected tissues by electron microscopy, indirect fluorescent antibody test (IFAT), reverse transcription,polymerase chain reaction (RT,PCR), and isolation in cell culture. The agent was identified as one of the four known genotypes of piscine nodavirus. In addition, a similar nodavirus was also detected in fish samples from disease outbreaks at the same facility in 1992. In the last decade, VNN has been reported among cultured populations of marine fish worldwide and this paper is the first record of the agent in North America. [source] On the Structure of the Adrenal Gland of the Common Seal (Phoca vitulina vitulina)ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 5 2004H. Bragulla Summary The adrenal gland is a vitally important endocrine gland that occupies a central role in the regulatory mechanisms of the body metabolism. Environmental stress factors lead to permanent strain and overload of the body resulting in structural alterations of the adrenals that in turn are followed by hormonal imbalances. This leads to an increased susceptibility to bacterial and viral diseases. The recurrence of numerous fatalities in the different seal populations of the North Sea (during the years 1988, 1989 and 2002), of the Baikal Lake and Caspian Sea (during the years 2000 and 2001) were the motive for a morphological investigation of the species-specific structure of the adrenal gland of the common seal in order to differentiate environmental stress-induced pathological alterations from the physiological structure of this organ. The study was based on adrenals of 112 common seals (Phoca vitulina vitulina) using light microscopic and transmission and scanning electron microscopic methods. The phocine adrenal gland displays several structural characteristics. Originating from the connective tissue organ capsule, narrow and broad septa intersperse the adrenal cortex. These septa contain blastemata as a reserve for the regeneration of hormone-producing cortical cells. Such blastemata are also occurring in the form of an intermediate zone in between the zona glomerulosa and zona fasciculata in the phocine adrenal cortex. Another species-specific characteristic is an inverse part of the adrenal cortex encircling the central vein of the organ. These structural features have to be considered in assessment and definition of pathological alterations of the adrenals as observed in the form of exhausted blastema cell pools in the adrenocortex of seals perished in the mentioned phocine mass mortalities. [source] After the Black Death: labour legislation and attitudes towards labour in late-medieval western EuropeECONOMIC HISTORY REVIEW, Issue 3 2007SAMUEL COHN The Black Death spurred monarchies and city-states across much of Western Europe to formulate new wage and price legislation. These legislative acts splintered in a multitude of directions that to date defy any obvious patterns of economic or political rationality. A comparison of labour laws in England, France, Provence, Aragon, Castile, the Low Countries, and the city-states of Italy shows that these laws did not flow logically from new post-plague demographics and economics,the realities of the supply and demand for labour. Instead, the new municipal and royal efforts to control labour and artisans' prices emerged from fears of the greed and supposed new powers of subaltern classes and are better understood in the contexts of anxiety that sprung forth from the Black Death's new horrors of mass mortality and destruction, resulting in social behaviour such as the flagellant movement and the persecution of Jews, Catalans, and beggars. [source] Environmental determinants correlated to Vibrio harveyi -mediated death of marine gastropodsENVIRONMENTAL MICROBIOLOGY, Issue 1 2010Youhei Fukui Summary Vibrio harveyi is an emerging pathogen that causes mass mortality in a wide variety of marine animal species; however, it is still unclear which environmental determinants correlate V. harveyi dynamics and the bacterium-mediated death of marine animal life. We conducted a correlation analysis over a 5-year period (2003,2007) analysing the following data: V. harveyi abundance, marine animal mortality and environmental variables (seawater temperature, salinity, pH, chlorophyll a, rainfall and total viable bacterial counts). The samples were collected from a coastal area in northern Japan, where deaths of a marine gastropod species (Haliotis discus hannai) have been reported. Our analysis revealed significant positive correlations between average seawater temperature and average V. harveyi abundance (R = 0.955; P < 0.05), and between average seawater temperature and V. harveyi -mediated abalone death (R = 0.931; P < 0.05). Based on the regression model, n°C rise in seawater temperature gave rise to a 21n -fold increase in the risk of mortality caused by V. harveyi infection. This is the first report providing evidence of the strong positive correlation between seawater temperature and V. harveyi -mediated death of marine species. [source] Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleachingFUNCTIONAL ECOLOGY, Issue 3 2009Kenneth R. N. Anthony Summary 1Coral bleaching events, predicted to increase in frequency and severity as a result of climate change, are a threat to tropical coral-reef ecosystems worldwide. Although the onset of spatially extensive, or ,mass', bleaching events can be predicted using simple temperature stress metrics, no models are available for predicting coral mortality risk or sub-lethal stress associated with bleaching. Here, we develop a model that links the functional response of colony energy balance and energy-store dynamics to coral mortality risk and recovery during and following bleaching events. 2In a series of simulations using response functions and parameter values derived from experimental studies for two Indo-Pacific coral species (Acropora intermedia and Montipora monasteriata), we demonstrate that prior energy-costly disturbances and alternative energy sources are both important determinants of coral mortality risk during and following bleaching. 3The timing of the onset of coral mass mortality is determined by a combination of bleaching severity (loss rate of photopigments), duration of the bleaching event, heterotrophy and the size of energy reserves (as lipid stores) before bleaching occurs. 4Depending on initial energy reserves, model results showed that high rates of heterotrophy could delay the onset of coral mortality by up to three weeks. Survival following bleaching was also strongly influenced by remaining lipid reserves, rates of heterotrophy, and rates of photopigment (or symbiont) recovery. 5Our results indicate that energy-costly disturbances and low availability of food, before and during bleaching events, respectively, work to increase bleaching-induced coral mortality risk for acroporid corals on Indo-Pacific reefs. [source] Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat waveGLOBAL CHANGE BIOLOGY, Issue 5 2009J. GARRABOU Abstract Late in summer 2003, extensive mass mortality of at least 25 rocky benthic macro-invertebrate species (mainly gorgonians and sponges) was observed in the entire Northwestern (NW) Mediterranean region, affecting several thousand kilometers of coastline. We were able to characterize the mortality event by studying six areas covering the main regions of the NW Mediterranean basin. The degree of impact on each study area was quantified at 49 sites by estimating the proportion of colonies affected in populations of several gorgonian species compared with reference data obtained in years without mortality signs. According to these data, the western areas (Catalan coast and Balearic Islands) were the least affected, while the central areas (Provence coast and Corsica-Sardinia) showed a moderate impact. The northernmost and eastern areas (Gulf of Genoa and Gulf of Naples) displayed the highest impact, with almost 80% of gorgonian colonies affected. The heat wave of 2003 in Europe caused an anomalous warming of seawater, which reached the highest temperatures ever recorded in the studied regions, between 1 and 3 °C above the climatic values (mean and maximum). Because this exceptional warming was observed in the depth ranges most affected by the mortality, it seems likely that the 2003 anomalous temperature played a key role in the observed mortality event. A correlation analysis between temperature conditions and degree of impact seems to support this hypothesis. Under the present climate warming trend, new mass mortality events may occur in the near future, possibly driving a major biodiversity crisis in the Mediterranean Sea. [source] Estimating age and season of death of pronghorn antelope (Antilocapra americana Ord) by means of tooth eruption and wearINTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 3 2001Patrick M. Lubinski Abstract Age and season of death information for prey animals at archaeological sites can address issues such as season of site occupation and prey hunting or harvesting strategies. Unfortunately, adequate reference information for estimating age and season is lacking for many wild species, including pronghorn antelope. To address this problem, new methods of scoring tooth eruption and wear have been developed and have been applied to a sample of over 500 pronghorn mandibles to obtain improved eruption and wear schedules. One implication of this study is that ,age class discreteness' is an unreliable method for demonstrating mass mortality of prey. This study provides a much larger comparative sample than previously available, although larger known-age mandible samples are still needed for pronghorn and many other wild species. Copyright © 2001 John Wiley & Sons, Ltd. [source] Non-specific immune response of turbot, Scophthalmus maximus (L.), experimentally infected with a pathogenic Vibrio pelagiusJOURNAL OF FISH DISEASES, Issue 6 2003L Villamil Abstract The effect of a pathogenic Vibrio pelagius, isolated during a mass mortality of turbot larvae, on the non-specific immune response of turbot, Scophthalmus maximus (L.), macrophages was studied both in vitro and in vivo. The in vitro treatment of head kidney (HK) macrophages with viable V. pelagius caused a significant inhibition of the chemiluminescence (CL) response in comparison with untreated macrophages, while incubation with heat-killed bacteria did not affect this response. In vivo, the intraperitoneal injection of V. pelagius resulted in a significant inhibition of the CL response in infected fish at days 1 and 4 post-infection compared with the control fish response. The HK macrophage nitric oxide (NO) production was enhanced by in vitro incubation with intermediate doses of viable V. pelagius (5 × 103 and 5 × 104 bacteria mL,1) and higher doses of the heat-killed bacteria (5 × 104,5 × 106 bacteria mL,1). In both cases, the NO inhibitorN- , -nitro-L-arginine was capable of down-regulating the specific NO induction caused by incubation with the bacterial treatments. In contrast, incubation with ECPs at higher doses caused a reduction in NO production. In vivo, a significant enhancement in NO production was also observed in macrophage supernatants at day 10 post-infection. Lysozyme concentration in the serum was also significantly increased in the experimentally infected fish at days 4 and 10 post-injection. In addition, viable V. pelagius and its ECPs significantly reduced HK macrophage viability in vitro, whereas no significant differences in viability were observed during the incubation with heat-killed bacteria. As NO production was enhanced in the experimentally infected fish, the inhibitory effect of the NO donor, S-nitroso-acetyl-penicillamine (SNAP), was tested in vitro in a cell-free assay. The results showed that growth of V. pelagius was significantly inhibited using SNAP at a high concentration (1 mm). [source] Relating the ontogeny of functional morphology and prey selection with larval mortality in Amphiprion frenatusJOURNAL OF MORPHOLOGY, Issue 6 2010Justin Anto Abstract Survival during the pelagic larval phase of marine fish is highly variable and is subject to numerous factors. A sharp decline in the number of surviving larvae usually occurs during the transition from endogenous to exogenous feeding known as the first feeding stage in fish larvae. The present study was designed to evaluate the link between functional morphology and prey selection in an attempt to understand how the relationship influences mortality of a marine fish larva, Amphiprion frenatus, through ontogeny. Larvae were reared from hatch to 14 days post hatch (DPH) with one of four diets [rotifers and newly hatched Artemia sp. nauplii (RA); rotifers and wild plankton (RP); rotifers, wild plankton, and newly hatched Artemia nauplii (RPA); wild plankton and newly hatched Artemia nauplii (PA)]. Survival did not differ among diets. Larvae from all diets experienced mass mortality from 1 to 5 DPH followed by decreased mortality from 6 to 14 DPH; individuals fed RA were the exception, exhibiting continuous mortality from 6 to 14 DPH. Larvae consumed progressively larger prey with growth and age, likely due to age related increase in gape. During the mass mortality event, larvae selected small prey items and exhibited few ossified elements. Cessation of mass mortality coincided with consumption of large prey and ossification of key elements of the feeding apparatus. Mass mortality did not appear to be solely influenced by inability to establish first feeding. We hypothesize the interaction of reduced feeding capacities (i.e., complexity of the feeding apparatus) and larval physiology such as digestion or absorption efficiency contributed to the mortality event during the first feeding period. J. Morphol., 2010. © 2010 Wiley-Liss, Inc. [source] Mortality of Northern Bluefin Tuna Thunnus thynnus Due to Trauma Caused by Collision During Growout CultureJOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2000Shigeru Miyashita Collisions with the walls of tanks or nets caused mass mortality that occurs during growout. The period when collisions frequently occur and the types of injury caused by collision were examined in this study. Juveniles were reared in indoor tanks from 30 to 120 d after hatching, and in an open sea net cage from 42 to 150 d after hatching. Dead fish were collected and counted daily in both of the experiments. In the indoor experiment, the sampled fish were preserved in 10% formalin solution, and each of 10 specimens of about 30, 50, 70, 85, 100, 130, 160 and 225 mm in body length (BL) were examined using x-rays to detect injury of the bones. Juvenile and young adult bluefin tuna showed a reduction in numbers caused by collision with the tank or the net wall during the experiments. In the indoor tank, there were 1,200 fish on day 30 but only eight on day 120. The daily mortality increased from day 30 after hatching, when juveniles reached 50-mm BL and remained over 4%/d until day 60 when juveniles grew to 300-mm BL. The proportion of dead fish with injuries of bone, especially of the vertebral column and the parasphenoid, increased after fish reached 50-mm BL, and exceeded 60% in fish with BL 85 mm or greater. In the open sea net cage, there were 3,841 fish at the start of the experiment on day 42 and only 65 on day 150. In this experiment, the reduction was greatest from the start of the experiment until day 80, when fish grew to approximately 25 cm in total length. Significant bacterial, viral or parasitic diseases were not observed in these fish; the only findings were dislocations of the vertebral column and injuries to the upper and lower jaws. These results show that the loss of juvenile and young adult bluefin tuna was caused by collision with the tank or net wall that fatally damaged the bones of the vertebral columns and the parasphenoid. [source] Protection of red sea bream Pagrus major against red sea bream iridovirus infection by vaccination with a recombinant viral proteinMICROBIOLOGY AND IMMUNOLOGY, Issue 3 2010Hajime Shimmoto ABSTRACT Megalocytivirus infections cause serious mass mortality in marine fish in East and Southeast Asian countries. In this study the immunogenicity of crude subunit vaccines against infection by the Megalocytivirus RSIV was investigated. Three capsid proteins, 18R, 351R and a major capsid protein, were selected for use as crude subunit vaccines. High homology among Megalocytivirus types was found in the initial sequence examined, the 351R region. Red sea bream (Pagrus major) juveniles were vaccinated by intraperitoneal injection of recombinant formalin-killed Escherichia coli cells expressing these three capsid proteins. After challenge infection with RSIV, fish vaccinated with the 351R-recombinant bacteria showed significantly greater survival than those vaccinated with control bacteria. The 351R protein was co-expressed with GAPDH from the bacterium Edwardsiella tarda in E. coli; this also protected against viral challenge. A remarkable accumulation of RSIV was observed in the blood of vaccinated fish, with less accumulation in the gills and spleen tissues. Thus, the 351R-GAPDH fusion protein is a potential vaccine against Megalocytivirus infection in red sea bream. [source] Population growth and mass mortality of an estuarine fish, Acanthopagrus butcheri, unlawfully introduced into an inland lakeAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 1 2009Kimberley Smith Abstract 1.In 2006, two periods of hypoxia resulted in the death of approximately 35 tonnes of black bream (Acanthopagrus butcheri) in Lake Indoon, a small inland lake in Western Australia. 2.Acanthopagrus butcheri was the first fish species to be recorded in this lake, along with the mosquitofish (Gambusia holbrooki) which was also observed during sampling in 2006. Acanthopagrus butcheri appears to have been introduced to Lake Indoon between 1998 and 2003 and formed a self-sustaining population. It is believed to have been deliberately introduced for the purpose of creating a recreational fishery, despite the existence of substantial penalties for illegal translocation of fish in Western Australia. 3.Recent human-induced environmental changes, including rising groundwater and salinization, have probably aided the establishment of both species in Lake Indoon. The importance of salinity to recruitment success by A. butcheri was indicated by the presence of only two age classes in 2006, with estimated recruitment dates coinciding with the years of highest recorded salinity in the lake. 4.The ,fish kills' provided an opportunity to examine aspects of A. butcheri biology in a relatively low salinity environment which is atypical for this estuarine species. In particular, the recruitment period in Lake Indoon was delayed until autumn/winter, rather than spring/summer as seen in other populations. Biological responses in Lake Indoon have implications for natural populations living in estuaries with modified salinity regimes. 5.The ecological, social and economic impacts potentially arising from the introduction of fish to Lake Indoon, which is an important migratory bird habitat and a recreational amenity for local residents and tourists, illustrate the complexities of fish translocation and the need for rigorous assessment before stocking to identify potential costs and benefits. Copyright © 2008 John Wiley & Sons, Ltd. [source] Experimental sponge fishery in Egypt during recovery from sponge diseaseAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2005J. Castritsi-Catharios Abstract 1.A survey was undertaken (1995) on the Mediterranean coast of Egypt that investigated four sponge fishing grounds. These fishing banks suffered from sponge disease between 1987 and 1990, causing a mass mortality of commercial sponges in the eastern and central Mediterranean. 2.Adult commercial sponges (length >10 cm) were harvested by divers in the infralittoral zone (depth range 17,36 m). The substratum at most of the sampling stations was hard, consisting mainly of plaques, rocks and heavy stones, sometimes covered by Posidonia oceanica. 3.Two commercial sponge species were detected, Hippospongia communis and Spongia cfr zimocca; the former was more prevalent and abundant. Light penetration in the area surveyed was high. The two commercial sponge species detected seemed to be well adapted to these conditions, as indicated by the colour of their external membranes, which were almost black due to enhanced pigment formation. The absence of Spongia officinalis, in the area surveyed may also be related to light penetration, since S. officinalis is a more sciaphilous species. 4.The shape of H. communis was almost spherical, and the average dimensions (length, width, height, circumference) increased with increasing depth of the fishing grounds. At shallower depths (<30 m), adult H. communis occurred in lower densities, whereas young commercial sponges were abundant. No signs of sponge disease were found. 5.It is concluded that the recovery of the four sponge fishing grounds was in progress, and that the repopulation of commercial sponges in the infralittoral zone showed a gradient from deeper to shallower waters. It is recommended to prohibit destructive fishing methods in the deeper waters in order to protect the population and its ability to regenerate. Copyright © 2005 John Wiley & Sons, Ltd. [source] |