Home About us Contact | |||
Mass Flux (mass + flux)
Selected AbstractsAnalysis of Soil Vapor Extraction Data to Evaluate Mass-Transfer Constraints and Estimate Source-Zone Mass FluxGROUND WATER MONITORING & REMEDIATION, Issue 3 2010Mark L. Brusseau Methods are developed to use data collected during cyclic operation of soil vapor extraction (SVE) systems to help characterize the magnitudes and time scales of mass flux associated with vadose zone contaminant sources. Operational data collected at the Department of Energy's Hanford site are used to illustrate the use of such data. An analysis was conducted of carbon tetrachloride vapor concentrations collected during and between SVE operations. The objective of the analysis was to evaluate changes in concentrations measured during periods of operation and nonoperation of SVE, with a focus on quantifying temporal dynamics of the vadose zone contaminant mass flux, and associated source strength. Three mass flux terms, representing mass flux during the initial period of an SVE cycle, during the asymptotic period of a cycle, and during the rebound period, were calculated and compared. It was shown that it is possible to use the data to estimate time frames for effective operation of an SVE system if a sufficient set of historical cyclic operational data exists. This information could then be used to help evaluate changes in SVE operations, including system closure. The mass flux data would also be useful for risk assessments of the impact of vadose zone sources on groundwater contamination or vapor intrusion. [source] Estimating Persistent Mass Flux of Volatile Contaminants from the Vadose Zone to Ground WaterGROUND WATER MONITORING & REMEDIATION, Issue 2 2009M.J. Truex Contaminants may persist for long time periods within low permeability portions of the vadose zone where they cannot be effectively treated and are a potential continuing source of contamination to ground water. Setting appropriate vadose zone remediation goals typically requires evaluating these persistent sources in terms of their impact on meeting ground water remediation goals. Estimating the impact on ground water can be challenging at sites with low aqueous recharge rates where vapor-phase movement is the dominant transport process in the vadose zone. Existing one-dimensional approaches for simulating transport of volatile contaminants in the vadose zone are considered and compared to a new flux-continuity-based assessment of vapor-phase contaminant movement from the vadose zone to the ground water. The flux-continuity-based assessment demonstrates that the ability of the ground water to move contaminant away from the water table controls the vapor-phase mass flux from the vadose zone across the water table. Limitations of these approaches are then discussed with respect to the required assumptions and the need to incorporate three-dimensional processes when evaluating vapor-phase transport from the vadose zone to the ground water. The carbon tetrachloride plume at the U.S. Department of Energy Hanford Site is used as the example site where persistent vadose zone contamination needs to be considered in the context of ground water remediation. [source] Development of the saltation system under controlled environmental conditionsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2002Samantha ArnoldArticle first published online: 24 JUN 200 Abstract The transport of sand by the wind occurs predominantly by the process of saltation. Following the entrainment of sand by an above threshold wind, the saltation system is regulated by the mutual interaction of the atmospheric boundary-layer, the sand cloud and the sand bed. Despite existing data on the spatial and temporal development of the sand transport system, very little is known about the development of the saltation system towards equilibrium. Results are presented from wind-tunnel experiments that were designed to address the simultaneous spatial and temporal development of the saltation system, with and without artificial sand feed. The development of the saltation system was monitored over a streamwise length of 8 m during a period of 3600 s. Mass flux data were measured simultaneously at 1 m intervals by the downwind deployment of seven Aarhus sand traps. Wind velocity data were collected throughout the experiments. The downwind spatial development of the saltation system is manifested by an overshoot in mass flux and friction velocity prior to declining towards a quasi-equilibrium. Mass flux overshoots at approximately 4 m downwind, in remarkable agreement with existing data of a comparable scale. Friction velocity overshoots at approximately 6 m downwind, a result not previously witnessed in saltation studies. The overshoot of mass flux prior to the overshoot in friction velocity is a spatial manifestation of the time lag between the entrainment of grains and the deceleration of the wind by the grains in transport. Temporally, the development of the saltation system is controlled by the availability of entrainable grains from the sand bed. Through time the saltation system develops from a transport-limited to a supply-limited system. The depletion of the sand bed through time limits the appropriateness of the assumption of ,equilibrium' for the universal prediction of mass flux. Copyright © 2002 John Wiley & Sons, Ltd. [source] Improvement and validation of a snow saltation model using wind tunnel measurementsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 14 2008Andrew Clifton Abstract A Lagrangian snow saltation model has been extended for application to a wide variety of snow surfaces. Important factors of the saltation process, namely number of entrained particles, ejection angle and speed, have been parameterized from data in the literature. The model can now be run using simple descriptors of weather and snow conditions, such as wind, ambient pressure and temperature, snow particle sizes and surface density. Sensitivity of the total mass flux to the new parameterizations is small. However, the model refinements also allow concentration and mass flux profiles to be calculated, for comparison with measurements. Sensitivity of the profiles to the new parameterizations is considerable. Model results have then been compared with a complete set of drifting snow data from our cold wind tunnel. Simulation mass flux results agree with wind tunnel data to within the bounds of measurement uncertainty. Simulated particle sizes at 50 mm above the surface are generally larger than seen in the tunnel, probably as the model only describes particles in saltation, while additional smaller particles may be present in the wind tunnel at this height because of suspension. However, the smaller particles carry little mass, and so the impact on the mass flux is low. The use of simple input data, and parameterization of the saltation process, allows the model to be used predictively. This could include applications from avalanche warning to glacier mass balance. Copyright © 2008 John Wiley & Sons, Ltd. [source] Development of the saltation system under controlled environmental conditionsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2002Samantha ArnoldArticle first published online: 24 JUN 200 Abstract The transport of sand by the wind occurs predominantly by the process of saltation. Following the entrainment of sand by an above threshold wind, the saltation system is regulated by the mutual interaction of the atmospheric boundary-layer, the sand cloud and the sand bed. Despite existing data on the spatial and temporal development of the sand transport system, very little is known about the development of the saltation system towards equilibrium. Results are presented from wind-tunnel experiments that were designed to address the simultaneous spatial and temporal development of the saltation system, with and without artificial sand feed. The development of the saltation system was monitored over a streamwise length of 8 m during a period of 3600 s. Mass flux data were measured simultaneously at 1 m intervals by the downwind deployment of seven Aarhus sand traps. Wind velocity data were collected throughout the experiments. The downwind spatial development of the saltation system is manifested by an overshoot in mass flux and friction velocity prior to declining towards a quasi-equilibrium. Mass flux overshoots at approximately 4 m downwind, in remarkable agreement with existing data of a comparable scale. Friction velocity overshoots at approximately 6 m downwind, a result not previously witnessed in saltation studies. The overshoot of mass flux prior to the overshoot in friction velocity is a spatial manifestation of the time lag between the entrainment of grains and the deceleration of the wind by the grains in transport. Temporally, the development of the saltation system is controlled by the availability of entrainable grains from the sand bed. Through time the saltation system develops from a transport-limited to a supply-limited system. The depletion of the sand bed through time limits the appropriateness of the assumption of ,equilibrium' for the universal prediction of mass flux. Copyright © 2002 John Wiley & Sons, Ltd. [source] Ecological control analysis: being(s) in control of mass flux and metabolite concentrations in anaerobic degradation processesENVIRONMENTAL MICROBIOLOGY, Issue 2 2007Wilfred F. M. Röling Summary Identification of the functional groups of microorganisms that are predominantly in control of fluxes through, and concentrations in, microbial networks would benefit microbial ecology and environmental biotechnology: the properties of those controlling microorganisms could be studied or monitored specifically or their activity could be modulated in attempts to manipulate the behaviour of such networks. Herein we present ecological control analysis (ECA) as a versatile mathematical framework that allows for the quantification of the control of each functional group in a microbial network on its process rates and concentrations of intermediates. In contrast to current views, we show that rates of flow of matter are not always limited by a single functional group; rather flux control can be distributed over several groups. Also, control over intermediate concentrations is always shared. Because of indirect interactions, through other functional groups, the concentration of an intermediate can also be controlled by functional groups not producing or consuming it. Ecological control analysis is illustrated by a case study on the anaerobic degradation of organic matter, using experimental data obtained from the literature. During anaerobic degradation, fermenting microorganisms interact with terminal electron-accepting microorganisms (e.g. halorespirers, methanogens). The analysis indicates that flux control mainly resides with fermenting microorganisms, but can shift to the terminal electron-accepting microorganisms under less favourable redox conditions. Paradoxically, halorespiring microorganisms do not control the rate of perchloroethylene and trichloroethylene degradation even though they catalyse those processes themselves. [source] Numerical Modelling of Flow Boiling Heat Transfer in Horizontal Metal-Foam Tubes,ADVANCED ENGINEERING MATERIALS, Issue 10 2009Wei Lu Abstract The flow boiling heat transfer performance in horizontal metal-foam tubes is numerically investigated based on the flow pattern map retrieved from experimental investigations. The flow pattern and velocity profile are generally governed by vapour quality and mass flow rate of the fluid. The porous media non-equilibrium heat transfer model is employed for modelling both vapour and liquid phase zones. The modelling predictions have been compared with experimental results. The effects of metal-foam morphological parameters, heat flux and mass flux on heat transfer have been examined. The numerical predictions show that the overall heat transfer coefficient of the metal-foam filled tube increases with the relative density (1-porosity), pore density (ppi), mass and heat flux. [source] Small-scale fluid motion mediates growth and nutrient uptake of Selenastrum capricornutumFRESHWATER BIOLOGY, Issue 6 2006T. A. WARNAARS Summary 1. A fluid-flow reactor using submersible speakers was constructed to generate small-scale fluid motion similar to conditions measured in open water environments; flow was quantified by particle image velocimetry. Additionally a Couette-type rotating cylinder was used to generate shear flows; flow was quantified using an optical hotwire probe and torque measurements. Growth rates of the green alga Selenastrum capricornutum were determined from changes in cell counts and viability was tested using the fluorogenic probe fluoresceine diacetate. 2. Evidence that fluid motion directly affects growth rates was obtained as a significant difference between growth in a moving versus non-moving fluid. A near 2-fold increase in growth rate was achieved for an energy dissipation rate of , = 10,7 m2 s,3; a rate common in lakes and oceans. The onset of the viability equilibrium, identified as the day of the test period when the number of active cells equalled non-active cells, was delayed by 2 days for moving fluid conditions as compared with a non-moving fluid. 3. Nutrient uptake was determined by a decrease in the bulk fluid concentration and cellular phosphorus concentration was also estimated. The thickness of the diffusive sublayer surrounding a cell, a zone dominated by molecular diffusion, was estimated. Increasing fluid motion was found to decrease the thickness of this layer. The Sherwood number (ratio of total mass flux to molecular mass flux) showed that advective flux surrounding cells dominated molecular diffusion flux with regard to Péclet numbers (ratio of advective transport to molecular diffusion transport). Fluid motion facilitated uptake rates and resulted in increased growth rates, compared with no-flow conditions. The rate-of-rotation and the rate-of-strain in a moving fluid equally mediated the diffusive sublayer thickness surrounding the cells. Our study demonstrates that small-scale fluid motion mediates algal growth kinetics and therefore should be included in predictive models for algal blooms. [source] Seismic evidence for a sharp lithospheric base persisting to the lowermost mantle beneath the CaribbeanGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2008Tadashi Kito SUMMARY Broad-band data from South American earthquakes recorded by Californian seismic networks are analysed using a newly developed seismic wave migration method,the slowness backazimuth weighted migration (SBWM). Using the SBWM, out-of-plane seismic P -wave reflections have been observed. The reflection locations extend throughout the Earth's lower mantle, down to the core,mantle boundary (CMB) and coincide with the edges of tomographically mapped high seismic velocities. Modelling using synthetic seismograms suggests that a narrow (10,15 km) low- or high-velocity lamella with about 2 per cent velocity contrast can reproduce the observed reflected waveforms, but other explanations may exist. Considering the reflection locations and synthetic modelling, the observed out-of-plane energy is well explained by underside reflections off a sharp reflector at the base of the subducted lithosphere. We also detect weaker reflections corresponding to the tomographically mapped top of the slab, which may arise from the boundary between the Nazca plate and the overlying former basaltic oceanic crust. The joint interpretation of the waveform modelling and geodynamic considerations indicate mass flux of the former oceanic lithosphere and basaltic crust across the 660 km discontinuity, linking processes and structure at the top and bottom of the Earth's mantle, supporting the idea of whole mantle convection. [source] Stochastic Study of Solute Transport in a Nonstationary MediumGROUND WATER, Issue 2 2006Bill X. Hu A Lagrangian stochastic approach is applied to develop a method of moment for solute transport in a physically and chemically nonstationary medium. Stochastic governing equations for mean solute flux and solute covariance are analytically obtained in the first-order accuracy of log conductivity and/or chemical sorption variances and solved numerically using the finite-difference method. The developed method, the numerical method of moments (NMM), is used to predict radionuclide solute transport processes in the saturated zone below the Yucca Mountain project area. The mean, variance, and upper bound of the radionuclide mass flux through a control plane 5 km downstream of the footprint of the repository are calculated. According to their chemical sorption capacities, the various radionuclear chemicals are grouped as nonreactive, weakly sorbing, and strongly sorbing chemicals. The NMM method is used to study their transport processes and influence factors. To verify the method of moments, a Monte Carlo simulation is conducted for nonreactive chemical transport. Results indicate the results from the two methods are consistent, but the NMM method is computationally more efficient than the Monte Carlo method. This study adds to the ongoing debate in the literature on the effect of heterogeneity on solute transport prediction, especially on prediction uncertainty, by showing that the standard derivation of solute flux is larger than the mean solute flux even when the hydraulic conductivity within each geological layer is mild. This study provides a method that may become an efficient calculation tool for many environmental projects. [source] Analysis of Soil Vapor Extraction Data to Evaluate Mass-Transfer Constraints and Estimate Source-Zone Mass FluxGROUND WATER MONITORING & REMEDIATION, Issue 3 2010Mark L. Brusseau Methods are developed to use data collected during cyclic operation of soil vapor extraction (SVE) systems to help characterize the magnitudes and time scales of mass flux associated with vadose zone contaminant sources. Operational data collected at the Department of Energy's Hanford site are used to illustrate the use of such data. An analysis was conducted of carbon tetrachloride vapor concentrations collected during and between SVE operations. The objective of the analysis was to evaluate changes in concentrations measured during periods of operation and nonoperation of SVE, with a focus on quantifying temporal dynamics of the vadose zone contaminant mass flux, and associated source strength. Three mass flux terms, representing mass flux during the initial period of an SVE cycle, during the asymptotic period of a cycle, and during the rebound period, were calculated and compared. It was shown that it is possible to use the data to estimate time frames for effective operation of an SVE system if a sufficient set of historical cyclic operational data exists. This information could then be used to help evaluate changes in SVE operations, including system closure. The mass flux data would also be useful for risk assessments of the impact of vadose zone sources on groundwater contamination or vapor intrusion. [source] Estimating Persistent Mass Flux of Volatile Contaminants from the Vadose Zone to Ground WaterGROUND WATER MONITORING & REMEDIATION, Issue 2 2009M.J. Truex Contaminants may persist for long time periods within low permeability portions of the vadose zone where they cannot be effectively treated and are a potential continuing source of contamination to ground water. Setting appropriate vadose zone remediation goals typically requires evaluating these persistent sources in terms of their impact on meeting ground water remediation goals. Estimating the impact on ground water can be challenging at sites with low aqueous recharge rates where vapor-phase movement is the dominant transport process in the vadose zone. Existing one-dimensional approaches for simulating transport of volatile contaminants in the vadose zone are considered and compared to a new flux-continuity-based assessment of vapor-phase contaminant movement from the vadose zone to the ground water. The flux-continuity-based assessment demonstrates that the ability of the ground water to move contaminant away from the water table controls the vapor-phase mass flux from the vadose zone across the water table. Limitations of these approaches are then discussed with respect to the required assumptions and the need to incorporate three-dimensional processes when evaluating vapor-phase transport from the vadose zone to the ground water. The carbon tetrachloride plume at the U.S. Department of Energy Hanford Site is used as the example site where persistent vadose zone contamination needs to be considered in the context of ground water remediation. [source] ,The National Stream Quality Accounting Network: a flux-based approach to monitoring the water quality of large riversHYDROLOGICAL PROCESSES, Issue 7 2001Richard P. Hooper Abstract Estimating the annual mass flux at a network of fixed stations is one approach to characterizing water quality of large rivers. The interpretive context provided by annual flux includes identifying source and sink areas for constituents and estimating the loadings to receiving waters, such as reservoirs or the ocean. Since 1995, the US Geological Survey's National Stream Quality Accounting Network (NASQAN) has employed this approach at a network of 39 stations in four of the largest river basins of the USA: the Mississippi, the Columbia, the Colorado and the Rio Grande. In this paper, the design of NASQAN is described and its effectiveness at characterizing the water quality of these rivers is evaluated using data from the first 3 years of operation. A broad range of constituents was measured by NASQAN, including trace organic and inorganic chemicals, major ions, sediment and nutrients. Where possible, a regression model relating concentration to discharge and season was used to interpolate between chemical observations for flux estimation. For water-quality network design, the most important finding from NASQAN was the importance of having a specific objective (that is, estimating annual mass flux) and, from that, an explicitly stated data analysis strategy, namely the use of regression models to interpolate between observations. The use of such models aided in the design of sampling strategy and provided a context for data review. The regression models essentially form null hypotheses for concentration variation that can be evaluated by the observed data. The feedback between network operation and data collection established by the hypothesis tests places the water-quality network on a firm scientific footing. Published in 2001 by John Wiley & Sons, Ltd. [source] Numerical study of boundary conditions for solute transport through a porous mediumINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2001Glen P. Peters Abstract A transition region may be defined as a region of rapid change in medium properties about the interface between two porous media or at the interface between a porous medium and a reservoir. Modelling the transition region between different porous media can assist in the selection of the most appropriate boundary conditions for the standard advection,dispersion equation (ADE). An advantage of modelling the transition region is that it removes the need for explicitly defining boundary conditions, though boundary conditions may be recovered as limiting cases. As the width of a transition region is reduced, the solution of the transition region model (TR model) becomes equivalent to the solution of the standard ADE model with correct boundary conditions. In this paper numerical simulations using the TR model are employed to select the most appropriate boundary conditions for the standard ADE under a variety of configurations and conditions. It is shown that at the inlet boundary between a reservoir and porous medium, continuity of solute mass flux should be used as the boundary condition. At the boundary interface between two porous media both continuity of solute concentration and solute mass flux should be used. Finally, in a finite porous medium where the solute is allowed to advect freely from the exit point, both continuity of solute concentration and solute mass flux should be used as the outlet boundary condition. The findings made here are discussed with reference to a detailed review of previous relevant theoretical and experimental observations. Copyright © 2001 John Wiley & Sons, Ltd. [source] Theory and numerics of geometrically non-linear open system mechanicsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2003E. Kuhl Abstract The present contribution aims at deriving a general theoretical and numerical framework for open system thermodynamics. The balance equations for open systems differ from the classical balance equations by additional terms arising from possible local changes in mass. In contrast to existing formulations, these changes not only originate from additional mass sources or sinks but also from a possible in- or outflux of matter. Constitutive equations for the mass source and the mass flux are discussed for the particular model problem of bone remodelling in hard tissue mechanics. Particular emphasis is dedicated to the spatial discretization of the coupled system of the balance of mass and momentum. To this end we suggest a geometrically non-linear monolithic finite element based solution technique introducing the density and the deformation map as primary unknowns. It is supplemented by the consistent linearization of the governing equations. The resulting algorithm is validated qualitatively for classical examples from structural mechanics as well as for biomechanical applications with particular focus on the functional adaption of bones. It turns out that, owing to the additional incorporation of the mass flux, the proposed model is able to simulate size effects typically encountered in microstructural materials such as open-pored cellular solids, e.g. bones. Copyright © 2003 John Wiley & Sons, Ltd. [source] Developing implicit pressure-weighted upwinding scheme to calculate steady and unsteady flows on unstructured gridsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 2 2008M. Darbandi Abstract The finite-volume methods normally utilize either simple or complicated mathematical expressions to interpolate the fluxes at the cell faces of their unstructured volumes. Alternatively, we benefit from the advantages of both finite-volume and finite-element methods and estimate the advection terms on the cell faces using an inclusive pressure-weighted upwinding scheme extended on unstructured grids. The present pressure-based method treats the steady and unsteady flows on a collocated grid arrangement. However, to avoid a non-physical spurious pressure field pattern, two mass flux per volume expressions are derived at the cell interfaces. The dual advantages of using an unstructured-based discretization and a pressure-weighted upwinding scheme result in obtaining high accurate solutions with noticeable progress in the performance of the primitive method extended on the structured grids. The accuracy and performance of the extended formulations are demonstrated by solving different standard and benchmark problems. The results show that there are excellent agreements with both benchmark and analytical solutions as well as experimental data. Copyright © 2007 John Wiley & Sons, Ltd. [source] Two-phase flow convective condensation of refrigerant mixtures under gas/liquid injectionINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 15 2005Samuel M. Sami Abstract The influence of gas/liquid injection on two-phase flow condensation heat transfer characteristics of some refrigerant mixtures in horizontal enhanced surface tubing is presented. Correlations were proposed to predict the impact of the gas/liquid injection on the heat transfer characteristics such as average heat transfer coefficient of R-507, R-404A, R-410A, and R-407C in two-phase flow condensation inside enhanced surface tubing. The data also revealed that gas, liquid and gas/liquid injection is beneficial at certain gas/liquid injection ratios to the heat transfer coefficient depending upon the Reynolds number and the condensation point of the refrigerant mixtures in question. It was also evident that the proposed condensation correlations and the experimental data were applicable to the entire heat and mass flux, investigated in the present study under gas/liquid injection conditions. The deviation between the experimental and predicted under gas/liquid injection were less than ± 10, for the majority of data. Copyright © 2005 John Wiley & Sons, Ltd. [source] Influence of magnetic field on two-phase flow convective boiling of some refrigerant mixturesINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 15 2005Samuel M. Sami Abstract In this paper, an experimental study on the influence of magnetohydrodynamic (MHD) on heat transfer characteristics of two-phase flow boiling of some refrigerant mixtures in air/refrigerant horizontal enhanced surface tubing is presented. Correlations were proposed to predict the impact of MHD on the heat transfer characteristics such as average heat transfer coefficients, and pressure drops of R-507, R-404A, R-410A, and R-407C in two-phase flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture's composition. It was also evident that the proposed correlations for predicting the heat transfer characteristics were applicable to the entire heat and mass flux, investigated in the present study. The deviation between the experimental and predicted value using new and improved correlations for the heat transfer coefficient and pressure drop were less than ±20%, for the majority of data. Copyright © 2005 John Wiley & Sons, Ltd. [source] Experimental study on stable steam condensation in a quenching tankINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 3 2001Hwan Y. Kim Abstract Experimental study on direct contact condensation (DCC) of a stable steam discharging into a quenching tank with sub-cooled water has been performed for five different sizes of horizontal nozzles over a wide range of steam mass flux and pool temperature conditions. Two different steam jet shapes (conical and ellipsoidal) were typically observed, depending on the steam mass flux and the pool temperature. The steam jet expansion ratios, the dimensionless steam jet lengths, and the average heat transfer coefficients were determined and the effects of steam mass flux, pool temperature, and nozzle diameter on these parameters were discussed. Empirical correlations for the dimensionless steam jet length and the average heat transfer coefficient as a function of steam mass flux and condensation driving potential were established. The axial and radial temperature distributions in the steam jet and in the surrounding pool water were measured and the effects of steam mass flux, pool temperature, and nozzle diameter on these parameters were also discussed. Copyright © 2001 John Wiley & Sons, Ltd. [source] A NUMERICAL APPROACH WITH VARIABLE TEMPERATURE BOUNDARY CONDITIONS TO DETERMINE THE EFFECTIVE HEAT TRANSFER COEFFICIENT VALUES DURING BAKING OF COOKIESJOURNAL OF FOOD PROCESS ENGINEERING, Issue 5 2006EREN DEMIRKOL ABSTRACT The increasing trade of ready-to-eat foods such as cookies highlights an interest in quality defects during baking. Heat (h and thermal diffusivity) and mass (mass transfer and diffusion coefficients) transfer parameters are significant parameters affecting the quality changes. Therefore, it is important to determine these parameters for modeling and process optimization studies. Among these, the h is important, revealing the relationship between the heating medium and product surface. As baking involves a simultaneous heat and mass transfer involving moisture diffusion and heat conduction inside and convective heat and mass transfer outside, a lumped system method may not be an accurate choice to determine the h value. Changes in the product volume and contact heating from bottom of the product also bring extra challenges to the determination of h. Therefore, the objective of this study was to use realistic approaches including simultaneous heat and mass transfer to determine the changes in h. The heffvalues for the bottom and top surface of the cookies were then determined, applying a numerical procedure where the surface temperature changes were the boundary conditions with evaporation on the surface. The hband ht values increased with baking temperature and varied with baking time. The results of this study showed that evaporative mass flux for the top surface, heat flux for the bottom surface and the product's volume changes were significant in the variation of h values. [source] Utilization of nanoscale zero-valent iron for source remediation,A case studyREMEDIATION, Issue 2 2006Keith W. Henn A pilot-scale study was performed using a palladium-catalyzed and polymer-coated nanoscale zero-valent iron (ZVI) particle suspension at the Naval Air Station in Jacksonville, Florida. A total of 300 pounds of nanoscale ZVI particle suspension was injected via a gravity feed and recirculated through a source area containing chlorinated volatile organic compounds (VOCs). The recirculation created favorable mixing and distribution of the iron suspension and enhanced the mass transfer of sorbed and nonaqueous constituents into the aqueous phase, where the contaminants could be reduced. Between 65 and 99 percent aqueous-phase VOC concentration reduction occurred, due to abiotic degradation, within five weeks of the injection. The rapid abiotic degradation processes then yielded to slower biological degradation as subsequent decreases in -elimination parameters were observed,yet favorable redox conditions were maintained as a result of the ZVI treatment. Post-treatment analyses revealed cumulative reduction of soil contaminant concentrations between 8 and 92 percent. Aqueous-phase VOC concentrations in wells side gradient and downgradient of the source were reduced up to 99 percent and were near or below applicable regulatory criteria. These reductions, coupled with the generation of innocuous by-products, indicate that nanoscale ZVI effectively degraded contamination and reduced the mass flux from the source, a critical metric identified for source treatment. A summary of this project was recently presented at the US EPA Workshop on Nanotechnology for Site Remediation in Washington, D.C., on October 21,22, 2005. This case study supplied evidence that nanoscale zero valent iron, an emerging remediation technology, has been implemented successfully in the field. More information about this workshop and this presentation can be found at www.frtr.gov/nano/index.htm. © 2006 Wiley Periodicals, Inc. [source] Soret Diffusion and Non-Ideal Dufour Conduction in Macroporous Catalysts with Exothermic Chemical Reaction at Large Intrapellet Damköhler NumbersTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2007Laurence A. Belfiore Abstract The adiabatic temperature rise in catalytic pellets is predicted from a modified version of the Prater equation. Onsager reciprocal relations for coupled heat and mass transfer are violated in an analysis of thermal diffusion in macroporous catalysts with exothermic chemical reaction when Dufour conduction (i.e., the diffusion-thermo effect) is neglected. In this contribution, Dufour conduction is analyzed for both ideal and non-ideal pseudo-binary gas mixtures that simulate the production of methanol from carbon monoxide and hydrogen. In the diffusion-controlled regime at large intrapellet Damköhler numbers where intermolecular collisions provide the dominant resistance to mass transfer within the catalytic pores, temperatures in the catalytic core could be much greater than predictions based on the original Prater equation when the Prater number exceeds 0.30. The molecular flux of thermal energy includes Fourier's law, the interdiffusional flux, and Dufour conduction. Diffusional mass flux includes Fick's law and the Soret effect. All physicochemical properties of the reactive gas mixture exhibit temperature dependence. There is essentially no difference between maximum intrapellet temperature predictions that include or neglect ideal Dufour conduction when external catalytic surface temperatures range from 300-400 K and thermal diffusion enhances the flux of "smaller" reactants toward the centre of the catalyst. For "large-molecule reactants" that participate in exothermic reactions, thermal diffusion opposes Fick's law and Dufour conduction opposes Fourier's law. Under these conditions, it is demonstrated that core temperatures are overestimated by neglecting both off-diagonal coupling mechanisms (i.e., Soret diffusion and Dufour conduction). Prater numbers greater than unity and unrealistically high gas pressures are required to distinguish between maximum intrapellet temperatures for ideal and real gas simulations, where the latter consider two-body interactions for Lennard-Jones molecules in the virial equation of state. On prédit l'augmentation de la température adiabatique dans les pastilles catalytiques à partir d'une version modifiée de l'équation de Prater. Les relations réciproques d'Onsager pour le transfert de chaleur et de matière couplé sont violées dans une analyse de la diffusion thermique dans les catalyseurs macroporeux avec réaction chimique exothermique lorsque la conduction de Dufour (p.ex., l'effet de thermo-diffusion) est négligée. Dans cet article, on analyse la conduction de Dufour pour des mélanges de gaz pseudo-binaires idéaux et non idéaux qui simulent la production de méthanol à partir d'oxyde de carbone et d'hydrogène. Dans le régime à diffusion contrôlée à grand nombre de Damköhler entre les pastilles pour lesquels les collisions entre les molécules fournit la résistance dominante au transfert de matière à l'intérieur des pores catalytiques, les températures dans le noyau catalytique pourraient être bien plus grandes que les prédictions basées sur l'équation de Prater originale lorsque le nombre de Prater excède 0,30. Le flux moléculaire de l'énergie thermique inclut la loi de Fourier, le flux interdiffusionnel, et la conduction de Dufour. Le flux massique diffusionnel inclut la loi de Fick et l'effet Soret. Toutes les propriétés physicochimiques du mélange de gaz réactif montre une dépendance thermique. Il n'y a essentiellement pas de différence entre les prédictions des températures maximales entre les pastilles qui incluent ou négligent la conduction de Dufour idéale quand les températures de surface catalytiques externes sont comprises entre 300 et 400 K; la diffusion thermique améliore le flux des réactifs «plus petits» vers le centre du catalyseur. Pour les «réactifs composés de grandes molécules» qui participent aux réactions exothermiques, la diffusion thermique s'oppose à la loi de Fick et la conduction de Dufour à la loi de Fourier. Dans ces conditions, il est démontré que les températures de noyau sont surestimées en négligeant les deux mécanismes de couplage hors-diagonales (c.à-d. la diffusion de Soret et la conduction de Dufour). Des nombres de Prater plus grands que l'unité et des pressions de gaz élevées peu réalistes sont nécessaires pour distinguer les températures maximales entre les pastilles entre les simulations de gaz idéales et réelles, en considérant pour ces dernières les interactions à deux corps pour les molécules de Lennard-Jones dans l'équation d'état du viriel. [source] Variance scaling in shallow-cumulus-topped mixed layersTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 628 2007R. A. J. Neggers Abstract Scaling of thermodynamic variance in shallow-cumulus-topped mixed layers is studied using large-eddy simulation (LES). First, the performance of the top-down scaling (the turbulent flux at mixed-layer top divided by w*) is evaluated for transient shallow-cumulus convection over land. The results indicate that this scaling fails to capture all the variance in the top half of the mixed layer when shallow cumulus clouds are present. A variance-budget analysis is then performed, to derive a new scaling for the variance at mixed-layer top, which differs from the standard top-down scaling by a factor of one Richardson number. The essential new features of the proposed scaling are that the local vertical gradient is retained and that a balance is assumed between gradient production of variance and removal by transport and dissipation, using an adjustment time-scale given by w*/h. Evaluation against LES for a range of different cases, including a dry convective boundary layer as well as steady-state marine and transient continental shallow cumulus, reveals a data-collapse of the newly-scaled variance, for all hours and all cases in the top half of the mixed layer. The corresponding vertical structure is shown to resemble a power-law function. The results suggest that the structure of variance in the dry convective boundary layer is similar to that in the sub-cloud mixed layer. In transient situations, the scaling reproduces the time-development of variance at sub-cloud mixed-layer top. The new cloud-base variance scale is then further interpreted in the context of statistical cloud schemes, which depend on the variance as the second moment of the associated probability density function. The results suggest that the area fraction of the moist convective thermals uniquely depends on the ratio of cloud-base transition-layer depth to sub-cloud mixed-layer depth. This puts ,valve'- or ventilation-type closures for the cloud-base mass flux in the context of the variance budget for the sub-cloud layer. Copyright © 2007 Royal Meteorological Society [source] The cumulus-capped boundary layer.THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 618 2006II: Interface fluxes Abstract This paper considers the relationship between the mean temperature and humidity profiles and the fluxes of heat and moisture at cloud base and the base of the inversion in the cumulus-capped boundary layer. The relationships derived are based on an approximate form of the scalar-flux budget and the scaling properties of the turbulent kinetic energy (TKE) budget. The scalar-flux budget gives a relationship between the change in the virtual potential temperature across either the cloud base transition zone or the inversion and the flux at the base of the layer. The scaling properties of the TKE budget lead to a relationship between the heat and moisture fluxes and the mean subsaturation through the liquid-water flux. The ,jump relation' for the virtual potential temperature at cloud base shows the close connection between the cumulus mass flux in the cumulus-capped boundary layer and the entrainment velocity in the dry-convective boundary layer. Gravity waves are shown to be an important feature of the inversion. © Crown copyright. 2006 [source] A convection scheme for data assimilation: Description and initial testsTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 606 2005Philippe Lopez Abstract A new simplified parametrization of subgrid-scale convective processes has been developed and tested in the framework of the ECMWF Integrated Forecasting System for the purpose of variational data assimilation, singular vector calculations and adjoint sensitivity experiments. Its formulation is based on the full nonlinear convection scheme used in ECMWF forecasts, but a set of simplifications has been applied to substantially improve its linear behaviour. These include the specification of a single closure assumption based on convective available potential energy, the uncoupling of the equations for the convective mass flux and updraught characteristics and a unified formulation of the entrainment and detrainment rates. Simplified representations of downdraughts and momentum transport are also included in the new scheme. Despite these simplifications, the forecasting ability of the new convective parametrization is shown to remain satisfactory even in seasonal integrations. A detailed study of its Jacobians and the validity of the linear hypothesis is presented. The new scheme is also tested in combination with the new simplified parametrization of large-scale clouds and precipitation recently developed at ECMWF. In contrast with the simplified convective parametrization currently used in ECMWF's operational 4D-Var, its tangent-linear and adjoint versions account for perturbations of all convective quantities including convective mass flux, updraught characteristics and precipitation fluxes. Therefore the new scheme is expected to be beneficial when combined with radiative calculations that are directly affected by condensation and precipitation. Examples are presented of applications of the new moist physics in 1D-Var retrievals using microwave brightness temperature measurements and in adjoint sensitivity experiments. Copyright © 2005 Royal Meteorological Society. [source] Tectonic vs. climate forcing in the Cenozoic sedimentary evolution of a foreland basin (Eastern Southalpine system, Italy)BASIN RESEARCH, Issue 6 2009N. Mancin ABSTRACT This paper discusses the Cenozoic interaction of regional tectonics and climate changes. These processes were responsible for mass flux from mountain belts to depositional basins in the eastern Alpine retro-foreland basin (Venetian,Friulian Basin). Our discussion is based on the depositional architecture and basin-scale depositional rate curves obtained from the decompacted thicknesses of stratigraphic units. We compare these data with the timing of tectonic deformation in the surrounding mountain ranges and the chronology of both long-term trends and short-term high-magnitude (,aberrant') episodes of climate change. Our results confirm that climate forcing (and especially aberrant episodes) impacted the depositional evolution of the basin, but that tectonics was the main factor driving sediment flux in the basin up to the Late Miocene. The depositional rate remained below 0.1 mm year,1 on average from the Eocene to the Miocene, peaking at around 0.36 mm year,1, during periods of maximum tectonic activity in the eastern Southern Alps. This dynamic strongly changed during the Pliocene,Pleistocene, when the basin-scale depositional rate increased to an average of 0.26 mm year,1 (Pliocene) and 0.73 mm year,1 (Pleistocene). This result fits nicely with the long-term global cooling trend recorded during this time interval. Nevertheless, we note that the timing of the observed increase may be connected with the presumed onset of major glaciations in the southern flank of the Alps (0.7,0.9 Ma), the acceleration of the global cooling trend (since 3,4 Ma) and climate variability (in terms of magnitude and frequency). All these factors suggest that combined high-frequency and high-magnitude cooling,warming cycles are particularly powerful in promoting erosion in mid-latitude mountain belts and therefore in increasing the sediment flux in foreland basins. [source] Wind erosion characteristics of Sahelian surface typesEARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2010Thomas Maurer Abstract The assessment of wind erosion magnitudes for a given area requires knowledge of wind erosion susceptibilities of the dominant local surface types. Relative wind erosion potentials of surfaces can hardly be compared under field conditions, as each erosion event is unique in terms of duration, intensity and extent. The objective of this study was to determine and compare relative wind erosion potentials of the most representative surface types over a transect comprising most parts of southwestern Niger. For this purpose, mobile wind tunnel experiments were run on 26 dominant surface types. The effects of surface disturbance were additionally determined for 13 of these surfaces. The results, namely measurements of wind fields and mass fluxes, can be classified according to specific surface characteristics. Three basic surface groups with similar emission behaviour and aerodynamic characteristics were identified: (1) sand surfaces, (2) rough stone surfaces and (3) flat crusted surfaces. Sand surfaces feature a turbulent zone close to the surface due to the development of a saltation layer. Their surface roughness is medium to high, as a consequence of the loss of kinetic energy of the wind field to saltating particles. Sand surfaces show the highest mass fluxes due to the abundance of loose particles, but also fairly high PM10 fluxes, as potential dust particles are not contained in stable crusts or aggregates. Rough stone surfaces, due to their fragmented and irregular surface, feature the highest surface roughness and the most intense turbulence. They are among the weakest emitters but, due to their relatively high share of potential dust particles, PM10 emissions are still average. Flat crusted surfaces, in contrast, show low turbulence and the lowest surface roughness. This group of surfaces shows rather heterogeneous mass fluxes, which range from moderate to almost zero, although the share of PM10 particles is always relatively high. Topsoil disturbance always results in higher total and PM10 emissions on sand surfaces and also on flat crusted surfaces. Stone surfaces regularly exhibit a decrease in emission after disturbance, which can possibly be attributed to a reorganization which protects finer particles from entrainment. The results are comparable with field studies of natural erosion events and similar wind tunnel field campaigns. The broad range of tested surfaces and the standardized methodology are a precondition for the future regionalization of the experimental point data. Copyright © 2010 John Wiley & Sons, Ltd. [source] The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina FasoEARTH SURFACE PROCESSES AND LANDFORMS, Issue 10 2007J. K. Leenders Abstract Soil loss caused by wind erosion is a widespread phenomenon in the Sahelian zone of West Africa. According to Sahelian farmers, scattered vegetation standing in amongst the crop has the potential for a wind erosion control strategy. This study was conducted to study the effect of single vegetation elements on the pattern of average wind speed and sediment transport. This was done by two experiments that were carried out during the rainy seasons of 2002 and 2003 in north Burkina Faso, West Africa. Wind speeds were measured using three sonic anemometers, at a sampling frequency of 16 Hz. Sediment transport was determined by calculating the mass fluxes from 17 MWAC catchers. In this study, a shrub was defined as a vegetation element with branches until ground and a tree as a vegetation element with a distinctive trunk below a canopy. Behind shrubs wind speed near the soil surface was reduced up to approximately seven times the height of the shrub. The observed reduction in wind speed in the area where wind speed was reduced was 15 per cent on average. At the sides of the shrub, wind speed was increased, by on average 6 per cent. As the area of increase in wind speed is one-third of the area of decrease in wind speed, the net effect of a shrub is a reduction in wind speed. A similar pattern was visible for the pattern of sediment transport around a shrub. Downwind of a shrub, sediment transport was diminished up to seven times the height of the shrub. Probably most of this material was trapped by the shrub. Trees showed a local increase of wind around the trunk, which is expected to relate to an increase in sediment transport around the trunk. Mass flux measurements of sediment transport were not made, but visual observations in the field substantiate this. Behind the canopy of a tree, a tree acts similarly to a shrub regarding its effects on average wind speed, but as a tree is generally a larger obstacle than a shrub the extent of this effect is larger than for shrubs. Thus, whereas shrubs are more effective than trees regarding their direct effect on soil loss by trapping sand particles near the soil surface, trees are more effective in affecting soil loss indirectly by reducing the wind speed downwind more effectively than shrubs. Therefore, to reduce soil loss in an area, the presence of both trees and shrubs is crucial. Copyright © 2007 John Wiley & Sons, Ltd. [source] Transient flow patterns in a microfluidic chip with a complicated microstructureHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2008Wei Zhang Abstract The transient flow patterns of the boiling flow in a microfluidic chip with a complicated microstructure were studied at low mass fluxes and high heat fluxes. The periodic flow pattern in the timescale of milliseconds and the stratified flow pattern were observed. For a specific separated zone, the liquid film thickness was increased along the flow direction and the dry-out always occurred earlier at the microchannel upstream rather than downstream. However, for different microchannel zones, the dry-out took place earlier in the downstream zone. It was determined that the low liquid Froude number was responsible for the formation of the stratified flow. The large boiling number resulted in a large shear stress at the vapor,liquid interface, leading to the accumulation of the liquid in the microchannel downstream, causing the increased liquid film thickness along the flow direction. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(4): 224,231, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20201 [source] Heat transfer to a moving packed bed of nickel pelletsTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2008M. H. I. Baird Abstract Heat transfer between a bed of nickel pellets and a vertical section of electrically heated steel pipe has been measured, with the pellet bed inside the vertical pipe. Most of the data are for a 20.27 cm diameter pipe but some data were also obtained for a 10.23 cm diameter pipe. The effective thermal conductivity of the stationary pellet bed has been estimated approximately from the results of unsteady heating tests. Tests have been carried out with a downwardly moving bed, including the effect of air flowing upwards through the bed. Average values of the pellet-side heat transfer coefficient are between 72 and 135 W/(m2°C) depending on the mass fluxes of air and pellets, and have been expressed as an empirical correlation. Le transfert de chaleur entre un lit de pastilles de nickel et une section verticale d'une conduite d'acier chauffée électriquement a été mesuré, le lit de pastilles se trouvant à l'intérieur de la conduite verticale. La plupart des données ont été obtenues pour une conduite de 20,27 cm de diamètre, mais certaines données ont également été obtenues pour une conduite de 10,23 cm de diamètre. La conductivité thermique effective d'un lit de pastilles stationnaire a été estimée de manière approximative à partir des résultats de tests de chauffe en régime non stationnaire. Les tests ont été menés avec un lit en mouvement descendant, incluant l'effet de l'air circulant dans le sens ascendant dans le lit. Les valeurs moyennes du coefficient de transfert de chaleur du côté des pastilles sont comprises entre 72 et 135 W/(m2°C) selon les flux massiques de l'air et des pastilles, et sont exprimées en tant que corrélation empirique. [source] |