Home About us Contact | |||
Mass Discrimination (mass + discrimination)
Selected AbstractsSample preparation effects in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of partially depolymerised carboxymethyl celluloseRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2003Dane Momcilovic Sample preparation effects in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) of partially depolymerised carboxymethyl cellulose (CMC) have been investigated. The depolymerisation was either enzymatic or acidic. Fractions of enzymatically depolymerised CMC were collected from size-exclusion chromatography (SEC) and further investigated by MALDI-TOFMS. 2,5-Dihydroxybenzoic acid was used as matrix, dissolved in H2O due to the poor solubility of CMC in suitable organic solvents. The samples were dried by two methods, in ambient atmosphere and at reduced pressure. Under reduced pressure the sample spot homogeneity increased. This drying method, however, produced additional adduct peaks in the mass spectra originating from ion exchange on the CMC oligomers. Analysis of CMC could be performed in both negative and positive ion modes. Mass discrimination and variation in ionisation efficiency were demonstrated by comparing mass spectra with SEC data. Measurements of the degree of substitution (DS) were performed on three CMCs with different DS values, which were depolymerised in trifluoroacetic acid. The three CMCs were easily distinguished from one another, but the obtained DS values deviated from the values supplied by the manufacturer. Copyright © 2003 John Wiley & Sons, Ltd. [source] Enantioselective analysis of ketamine and its metabolites in equine plasma and urine by CE with multiple isomer sulfated ,-CDELECTROPHORESIS, Issue 15 2007Regula Theurillat Abstract CE with multiple isomer sulfated ,-CD as the chiral selector was assessed for the simultaneous analysis of the enantiomers of ketamine and metabolites in extracts of equine plasma and urine. Different lots of the commercial chiral selector provided significant changes in enantiomeric ketamine separability, a fact that can be related to the manufacturing variability. A mixture of two lots was found to provide high-resolution separations and interference-free detection of the enantiomers of ketamine, norketamine, dehydronorketamine, and an incompletely identified hydroxylated metabolite of norketamine in liquid/liquid extracts of the two body fluids. Ketamine, norketamine, and dehydronorketamine could be unambiguously identified via HPLC fractionation of urinary extracts and using LC-MS and LC-MS/MS with 1,mmu mass discrimination. The CE assay was used to characterize the stereoselectivity of the compounds' enantiomers in the samples of five ponies anesthetized with isoflurane in oxygen and treated with intravenous continuous infusion of racemic ketamine. The concentrations of the ketamine enantiomers in plasma are equal, whereas the urinary amount of R -ketamine is larger than that of S -ketamine. Plasma and urine contain higher S - than R -norketamine levels and the mean S -/R -enantiomer ratios of dehydronorketamine in plasma and urine are lower than unity and similar. [source] Influence of response factors on determining equilibrium association constants of non-covalent complexes by electrospray ionization mass spectrometryJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 5 2003Valérie Gabelica Abstract A method for determining the equilibrium association constant of a complexation reaction A + B , AB by electrospray ionization mass spectrometry is described. The method consists in measuring the relative intensities of the peaks corresponding to A and to AB in equimolar A,B solutions at different concentrations C0. The results are fitted by a non-linear least-squares procedure, with the two variable parameters being the equilibrium association constant Ka and a factor R, defined by I(AB)/I(A) = R × [AB]/[A]. The factor R is the ratio between the response factors of AB and A, and corrects for the relative electrospray responses of the complex and the free substrate A, mass discrimination of instrumental origin and/or moderate in-source dissociation. The method is illustrated with the following two systems: complexes between a double-stranded 12-base pair oligonucleotide and minor groove binders, and cyclodextrin complexes with ,,,-dicarboxylic acids. For the oligonucleotide complexes, it is found that the response of the complex is not dramatically different to the response of the free oligonucleotide duplex, as the double helix conformation is disturbed by the drug only to a minor extent. In the case of cyclodextrin complexes, these complexes were found to have a much higher response than free cyclodextrin. This may be due to the fact that cyclodextrin is neutral in solution, whereas the complex is charged, but it can also stem from the fact that a significant proportion of the complex is in a non-inclusion geometry. The present method requires the exact determination of the concentrations of the reactants and is applicable to 1 : 1 complexes. Copyright © 2003 John Wiley & Sons, Ltd. [source] Evaluation of axial DC offsets during scanning of a quadrupole ion trap for sensitivity improvementsRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2001Timothy Vaden In the normal operation of quadrupole ion trap mass spectrometers, approximately half of the trapped ions are ejected through the source endcap during a mass-selective instability scan. This reduces the sensitivity of the instrument by ,50%. In this preliminary study, a circuit was constructed that produced a dipolar DC offset on the axial modulation waveform to recover this lost ion current. A variable (0 to 10,V DC), positive and negative offset was applied to the source and detector endcap, respectively. This DC offset axially displaced the ion cloud toward the detector endcap increasing the probability of detection. Several compounds, including 11 pesticides, were evaluated. Sensitivity enhancements ranged from 13 to 97% (theoretical 100%). No spectral resolution problems were observed; however, a compound-dependent mass discrimination was observed in several cases. This mass discrimination problem is currently under investigation. Copyright © 2001 John Wiley & Sons, Ltd. [source] |