Mass Cultivation (mass + cultivation)

Distribution by Scientific Domains


Selected Abstracts


Dunaliella biotechnology: methods and applications

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2009
A. Hosseini Tafreshi
Summary The microalga Dunaliella salina is the best commercial source of natural ,-carotene. Additionally, different species of Dunaliella can accumulate significant amounts of valuable fine chemicals such as carotenoids, glycerol, lipids, vitamins, minerals and proteins. They also have a large potential for biotechnological processes such as expressing of foreign proteins and treatment of wastewater. In this review, we discussed several biotechnological aspects of the mass cultivation of D. salina like strain selection, carotenoid induction, culture conditions, culture systems and downstream processes. We also discuss several traditional and new applications of the genus. [source]


Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2008
N. Biondi
Abstract Aims:, To exploit the cyanobacterial diversity of microbial mats growing in the benthic environment of Antarctic lakes for the discovery of novel antibiotic and antitumour activities. Methods and results:, In all, 51 Antarctic cyanobacteria isolated from benthic mats were cultivated in the laboratory by optimizing temperature, irradiance and mixing. Productivity was generally very low (,60 mg l,1 d,1) with growth rates (,) in the range of 0·02,0·44 d,1. Growth rates were limited by photosensitivity, sensitivity to air bubbling, polysaccharide production or cell aggregation. Despite this, 126 extracts were prepared from 48 strains and screened for antimicrobial and cytotoxic activities. Seventeen cyanobacteria showed antimicrobial activity (against the Gram-positive Staphylococcus aureus, the filamentous fungus Aspergillus fumigatus or the yeast Cryptococcus neoformans), and 25 were cytotoxic. The bioactivities were not in accordance with the phylogenetic grouping, but rather strain-specific. One active strain was cultivated in a 10-l photobioreactor. Conclusions:, Isolation and mass cultivation of Antarctic cyanobacteria and LC-MS (liquid chromatography/mass spectrometry) fractionation of extracts from a subset of those strains (hits) that exhibited relatively potent antibacterial and/or antifungal activities, evidenced a chemical novelty worthy of further investigation. Significance and impact of the study:, Development of isolation, cultivation and screening methods for Antarctic cyanobacteria has led to the discovery of strains endowed with interesting antimicrobial and antitumour activities. [source]


Biological control of terrestrial molluscs using Phasmarhabditis hermaphrodita,progress and prospects

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 12 2007
Robbie Rae
Abstract Phasmarhabditis hermaphrodita Schneider (Nematoda: Rhabditidae) is a nematode that parasitises a wide range of slug and snail species. It has been formulated into a biological control agent (Nemaslug®) and was commercialised in 1994. It is now available in fourteen European countries. A review is given of all research on P. hermaphrodita, including basic biology, mass cultivation, formulation, host range, application strategies, field efficacy and effects on non-target organisms. The many critical gaps in present knowledge are highlighted, and future research is proposed that will lead to greater understanding of this unusual parasite and may enable its more widespread use in the management of mollusc pests. Copyright © 2007 Society of Chemical Industry [source]


Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009
Liliana Rodolfi
Abstract Thirty microalgal strains were screened in the laboratory for their biomass productivity and lipid content. Four strains (two marine and two freshwater), selected because robust, highly productive and with a relatively high lipid content, were cultivated under nitrogen deprivation in 0.6-L bubbled tubes. Only the two marine microalgae accumulated lipid under such conditions. One of them, the eustigmatophyte Nannochloropsis sp. F&M-M24, which attained 60% lipid content after nitrogen starvation, was grown in a 20-L Flat Alveolar Panel photobioreactor to study the influence of irradiance and nutrient (nitrogen or phosphorus) deprivation on fatty acid accumulation. Fatty acid content increased with high irradiances (up to 32.5% of dry biomass) and following both nitrogen and phosphorus deprivation (up to about 50%). To evaluate its lipid production potential under natural sunlight, the strain was grown outdoors in 110-L Green Wall Panel photobioreactors under nutrient sufficient and deficient conditions. Lipid productivity increased from 117 mg/L/day in nutrient sufficient media (with an average biomass productivity of 0.36 g/L/day and 32% lipid content) to 204 mg/L/day (with an average biomass productivity of 0.30 g/L/day and more than 60% final lipid content) in nitrogen deprived media. In a two-phase cultivation process (a nutrient sufficient phase to produce the inoculum followed by a nitrogen deprived phase to boost lipid synthesis) the oil production potential could be projected to be more than 90 kg per hectare per day. This is the first report of an increase of both lipid content and areal lipid productivity attained through nutrient deprivation in an outdoor algal culture. The experiments showed that this marine eustigmatophyte has the potential for an annual production of 20 tons of lipid per hectare in the Mediterranean climate and of more than 30 tons of lipid per hectare in sunny tropical areas. Biotechnol. Bioeng. 2009;102: 100,112. © 2008 Wiley Periodicals, Inc. [source]