Home About us Contact | |||
Mass Basis (mass + basis)
Selected AbstractsDietary accumulation, disposition, and metabolism of technical pentabrominated diphenyl ether (DE-71) in pregnant mink (Mustela vison) and their offspring,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2008Si Zhang Abstract Concentrations of polybrominated diphenyl ethers (PBDEs) in humans and wildlife suggest significant bioaccumulation potential in mammals, but no quantitative biomagnification data from controlled experiments are currently available. As part of a larger study examining the effects of PBDEs on mink (Mustela vison) reproduction and development, we examined congener-specific tissue distribution, maternal transfer, biotransformation, and biomagnification of the technical penta-BDE mixture, DE-71, in farmed mink. Adult female mink were fed one of four concentrations of DE-71 (0-2.5 ,g/g) in the diet from breeding through gestation and until weaning at 6 weeks postparturition. Parent PBDEs were measured in tissues and excreta of adult mink, kits, and juveniles, whereas hydroxylated PBDEs (OH-PBDEs) were measured in juveniles only. Similar lipid-normalized concentrations of PBDEs were detected in most tissues of adult mink with the exception of brain, in which concentrations were significantly lower. Kits, however, had a higher proportion of PBDEs in brain compared with adults, presumably because of incomplete development of the blood-brain barrier. Maternal transfer favored lower-brominated PBDE congeners, and the bulk of the body burden in kits at weaning resulted from lactational rather than transplacental transfer. Lipid-normalized, whole-body biomagnification factors ranged from 0.5 to 5.2 for the major congeners and were highest for BDEs 47 and 153. Metabolism clearly limited the biomagnification of some PBDEs, and OH-PBDEs were detectable in plasma, liver, and feces. On a mass basis, OH-PBDEs accounted for 28 to 32% of the excreted fraction, indicating metabolism was an important elimination pathway. Further studies are required to understand the mechanisms of PBDE biotransformation. [source] Effects of dose and particle size on activated carbon treatment to sequester polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine sedimentsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2005John R. Zimmerman Abstract Recent laboratory studies show that mixing activated carbon with contaminated sediment reduces the chemical and biological availability of hydrophobic organic contaminants. In this study, we test the effects of varying the activated carbon dose and particle size in reducing the aqueous availability of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and the uptake of PCBs by two benthic organisms. We mixed PCB- and PAH-contaminated sediment from Hunters Point Naval Shipyard, San Francisco Bay (CA, USA), for one month with activated carbon, at doses of 0.34, 1.7, and 3.4% dry mass basis. We found that increasing the carbon dose increased the effectiveness in reducing PCB bioaccumulation. In 56-d uptake tests with the benthic organisms Neanthes arenaceodentata and Leptocheirus plumulosus, PCB bioaccumulation was reduced by 93 and 90%, respectively, with 3.4% carbon. Increasing the dose also increased the effectiveness in reducing PCB and PAH aqueous concentrations and uptake by semipermeable membrane devices and quiescent flux of PCBs to overlying water. Decreasing activated carbon particle size increased treatment effectiveness in reducing PCB aqueous concentration, and larger-sized activated carbon (400,1,700 ,m) was ineffective with a contact period of one month. We invoke a numerical model based on intraparticle diffusion in sediment and activated carbon particles to help interpret our experimental results. This model was useful in explaining the trends for the effect of activated carbon dose and particle size on PCB aqueous concentrations in well-mixed systems. [source] The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade toleranceFUNCTIONAL ECOLOGY, Issue 1 2000T. Rijkers Abstract 1.,Light-saturated rate of photosynthesis (Amax), nitrogen (N), chlorophyll (Chl) content and leaf mass per unit area (LMA) were measured in leaves of trees of different heights along a natural light gradient in a French Guiana rain forest. The following four species, arranged in order from most shade-tolerant to pioneer, were studied: Duguetia surinamensis, Vouacapoua americana, Dicorynia guianensis and Goupia glabra. Light availability of trees was estimated using hemispherical photography. 2.,The pioneer species Goupia had the lowest LMA and leaf N on both an area and mass basis, whereas Duguetia had the highest values. In general, leaf variables of Vouacapoua and Dicorynia tended to be intermediates. Because Amax/area was similar among species, Goupia showed both a much higher light-saturated photosynthetic nitrogen-use efficiency (PNUEmax) and Amax/mass. Leaves of Vouacapoua demonstrated the greatest plasticity in Amax/area, particularly in small saplings. 3.,A distinction could be made between the effect of tree height and light availability on the structural, i.e. LMA, and photosynthetic leaf characteristics of all four species. The direction and magnitude of the variation in variables were similar among species. 4.,LMA was the key variable that mainly determined variation in the other leaf variables along tree height and light availability gradients, with the exception of changes in chlorophyll concentration. Amax/area, N/area, LMA and stomatal conductance to water vapour (gs) increased, whereas Chl/mass decreased, with both increasing tree height and canopy openness. Amax/mass, PNUEmax and Amax/Chl increased with increasing openness only. N/mass and Chl/area were independent of tree height and openness, except for small saplings of Goupia which had a much lower Chl/area. [source] Supercritical antisolvent micronisation of synthetic all- trans -,-carotene with tetrahydrofuran as solvent and carbon dioxide as antisolventJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 2 2009Miguel A Tavares Cardoso Abstract BACKGROUND: Supercritical antisolvent (SAS) micronisation of synthetic trans -,-carotene was studied using tetrahydrofuran (THF) as solvent and supercritical carbon dioxide (CO2) as antisolvent, with the objective of increasing its bioavailability and facilitating its dispersion in oil and emulsion formulations as a result of its smaller particle size. The micronised powder was analysed by scanning electron microscopy and high-performance liquid chromatography. Micronisation experiments were performed in order to evaluate the effects of temperature (308.15,333.15 K), pressure (6.5,13 MPa) and concentration of the liquid solution (6,9 g L,1). The effect of the supercritical CO2/THF flow ratio in the range between 4 and 44 (on a mass basis) was also analysed. Determinations of equilibrium concentrations of ,-carotene in the CO2/THF mixture were also performed. RESULTS: The particle size obtained ranged from 1 to 500 µm, with mean particle diameters around 100 µm. Three types of morphology were found in the precipitated powder: crystalline with superficial pores and leaf-like appearance; crystalline with regular shapes and blade-like edges; and crystalline without superficial pores and leaf-like apearance. The Peng,Robinson equation of state was used to calculate the density of the CO2/THF binary mixture, and the solubility of ,-carotene in this mixture was correlated with its density. CONCLUSION: The use of the SAS technique to micronise ,-carotene proved to be efficient, and the absence of degradation in the micronised powder allows the industrial application of this technique. Copyright © 2008 Society of Chemical Industry [source] Thermal machines based on surface energy of wetting: Thermodynamic analysisAICHE JOURNAL, Issue 3 2003A. Laouir This work proposes an original thermodynamic-energetic analysis of the feasibility and ideal performance of thermal machines based on the wetting phenomenon proposed by V. A. Eroshenko. The extension or contraction of a liquid film is taken as a "tutorial" example to introduce the basic thermodynamic relations of this 2-D transformation. It implies both mechanical and thermal effects, and this coupling allows conversion of heat to work (thermal engine) or conversely to pump heat (refrigeration/heat pump effect). A similar approach is then developed for the interface between a liquid and a highly microporous solid, having a large internal surface area. The thermodynamic behavior of this interface involves as state variables the surface tension of the liquid, the contact angle, and their dependence on temperature. Depending on the relative magnitude and sign of these quantities, and, therefore, on the working couple and the temperature range, a variety of machine cycles are feasible, or excluded, and a method is proposed for a comprehensive inventory. Order-of-magnitude calculations of the energy densities are presented based on the existing experimental data for several systems involving water as the fluid. The tentative conclusions are that the energy densities are very small on a mass basis compared to conventional systems based on vaporization, but the contrary is true on a volume basis because the phase transformation (extension of the surface) occurs in a condensed state. There may, therefore, be some niches for thermal machines of this type, but they remain to be identified and validated. [source] Tracer studies of high-shear granulation: II.AICHE JOURNAL, Issue 9 2001Population balance modeling A population balance framework developed describes the tracer studies in Part I. A two internal coordinate population balance equation (PBE) links the evolution with time of granule-size and tracer-mass distributions to underlying rate processes. A new analytical PBE was developed for the tracer distribution and novel numerical techniques, including a new discretized population balance equation for breakage or grinding. Also developed is a general differential technique for extracting rate constants from measurements of particle-size distributions. Granulation in a high-shear mixer proceeds after nucleation, not studied here, with very high initial breakage rates but a relatively unchanging aggregation rate constant. The breakage function is bimodal on a mass basis and the selection rate decays exponentially over about 20 s. A heterogeneous strength hypothesis was used to account for this time dependence. Aggregation rates are the highest for interactions between small and large granules and may be quantitatively given by the Equipartition of kinetic energy kernel developed from the theory of collisions between gas molecules. The model can describe granule-size and tracer-mass distributions simultaneously with great accuracy. The need to replace time as a driving force variable in the kinetics for these systems is identified. [source] Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit areaPLANT CELL & ENVIRONMENT, Issue 3 2002P. Meir Abstract The observation of acclimation in leaf photosynthetic capacity to differences in growth irradiance has been widely used as support for a hypothesis that enables a simplification of some soil-vegetation-atmosphere transfer (SVAT) photosynthesis models. The acclimation hypothesis requires that relative leaf nitrogen concentration declines with relative irradiance from the top of a canopy to the bottom, in 1 : 1 proportion. In combination with a light transmission model it enables a simple estimate of the vertical profile in leaf nitrogen concentration (which is assumed to determine maximum carboxylation capacity), and in combination with estimates of the fraction of absorbed radiation it also leads to simple ,big-leaf' analytical solutions for canopy photosynthesis. We tested how forests deviate from this condition in five tree canopies, including four broadleaf stands, and one needle-leaf stand: a mixed-species tropical rain forest, oak (Quercus petraea (Matt.) Liebl), birch (Betula pendula Roth), beech (Fagus sylvatica L.) and Sitka spruce (Picea sitchensis (Bong.) Carr). Each canopy was studied when fully developed (mid-to-late summer for temperate stands). Irradiance (Q, µmol m,2 s,1) was measured for 20 d using quantum sensors placed throughout the vertical canopy profile. Measurements were made to obtain parameters from leaves adjacent to the radiation sensors: maximum carboxylation and electron transfer capacity (Va, Ja, µmol m,2 s,1), day respiration (Rda, µmol m,2 s,1), leaf nitrogen concentration (Nm, mg g,1) and leaf mass per unit area (La, g m,2). Relative to upper-canopy values, Va declined linearly in 1 : 1 proportion with Na. Relative Va also declined linearly with relative Q, but with a significant intercept at zero irradiance (P < 0·01). This intercept was strongly related to La of the lowest leaves in each canopy (P < 0·01, r2 = 0·98, n= 5). For each canopy, daily lnQ was also linearly related with lnVa(P < 0·05), and the intercept was correlated with the value for photosynthetic capacity per unit nitrogen (PUN: Va/Na, µmol g,1 s,1) of the lowest leaves in each canopy (P < 0·05). Va was linearly related with La and Na(P < 0·01), but the slope of the Va : Na relationship varied widely among sites. Hence, whilst there was a unique Va : Na ratio in each stand, acclimation in Va to Q varied predictably with La of the lowest leaves in each canopy. The specific leaf area, Lm(cm2 g,1), of the canopy-bottom foliage was also found to predict carboxylation capacity (expressed on a mass basis; Vm, µmol g,1 s,1) at all sites (P < 0·01). These results invalidate the hypothesis of full acclimation to irradiance, but suggest that La and Lm of the most light-limited leaves in a canopy are widely applicable indicators of the distribution of photosynthetic capacity with height in forests. [source] Variation in ecophysiology and carbon economy of invasive and native woody vines of riparian zones in south-eastern QueenslandAUSTRAL ECOLOGY, Issue 6 2010OLUSEGUN O. OSUNKOYA Abstract Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships , signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species. [source] Spatial distribution and prediction of seed production by Eucalyptus microcarpa in a fragmented landscapeAUSTRAL ECOLOGY, Issue 1 2010PETER A. VESK Abstract Woodlands worldwide have been greatly modified by clearing for agriculture, and their conservation and restoration requires understanding of tree recruitment processes. Seed production is one possible point of recruitment failure, and one that the spatial arrangement of trees may affect. We sampled 118 Eucalyptus microcarpa (Myrtaceae) trees to compare and analyse the determinants of seed production in this dominant tree of modified, fragmented temperate grassy woodlands, which extend over much of southeastern Australia. Fecundity was estimated as the seed crop measured on leaf mass and whole tree bases and was compared between categories of tree configuration. We also modelled fecundity using boosted regression trees, a new and flexible tool. Fecundity on a leaf mass basis was predominantly influenced by environmental factors (topographic ,wetness', slope, soil type), rather than by local tree density and configuration. Fewer seed per unit leaf mass were produced on flat and topographically wet sites, reflecting poor tolerance of waterlogging by E. microcarpa. By contrast, whole tree fecundity was little influenced by environmental factors. Local tree density and configuration did influence whole tree fecundity, which was high in solitary and woodland-spaced trees and reduced under high local density. We found little evidence for reduced fecundity of E. microcarpa in solitary trees. This points to the importance of scattered trees as sources of seed for tree recruitment and for natural regeneration of landscape level tree cover. Considerable uncertainty remains in modelled seed supply, and may be reduced with sampling across multiple years and greater environmental and spatial domains. [source] |