Marker Systems (marker + system)

Distribution by Scientific Domains


Selected Abstracts


Germ-line transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by the piggyBac transposable element

INSECT MOLECULAR BIOLOGY, Issue 3 2000
J. J. Peloquin
Abstract The pink bollworm, Pectinophora gossypiella, is a world-wide pest of cultivated cotton. In certain growing regions populations are suppressed by a sterile release strategy. Efforts to improve the sterile insect technique as well as our understanding of lepidopteran biology could benefit greatly from a germ-line transformation system. We report transformation of pink bollworm with a piggyBac transposable element carrying the enhanced green flourescent protein (EGFP) marker gene. This vector,marker system resulted in recovery of transgenics at a rate of approximately 3.5%. Integration of the transforming construct that was typical of piggyBac was demonstrated by Southern analysis and sequence determination of transposon flanks. Expression of the EGFP marker was visualized by fluorescent microscopy and Western Blot analysis. Maintenance of transformed strains indicates that the transgene segregates in a Mendelian fashion and has been stable over fourteen generations to date. [source]


Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic

MOLECULAR ECOLOGY, Issue 1 2006
DANA M. HAWLEY
Abstract The impact of founder events on levels of genetic variation in natural populations remains a topic of significant interest. Well-documented introductions provide a valuable opportunity to examine how founder events influence genetic diversity in invasive species. House finches (Carpodacus mexicanus) are passerine birds native to western North America, with the large eastern North American population derived from a small number of captive individuals released in the 1940s. Previous comparisons using amplified fragment length polymorphism (AFLP) markers found equivalent levels of diversity in eastern and western populations, suggesting that any genetic effects of the founder event were ameliorated by the rapid growth of the newly established population. We used an alternative marker system, 10 highly polymorphic microsatellites, to compare levels of genetic diversity between four native and five introduced house finch populations. In contrast to the AFLP comparisons, we found significantly lower allelic richness and heterozygosity in introduced populations across all loci. Three out of five introduced populations showed significant reductions in the ratio of the number of alleles to the allele size range, a within-population characteristic of recent bottlenecks. Finally, native and introduced populations showed significant pairwise differences in allele frequencies in every case, with stronger isolation by distance within the introduced than native range. Overall, our results provide compelling molecular evidence for a founder effect during the introduction of eastern house finches that reduced diversity levels at polymorphic microsatellite loci and may have contributed to the emergence of the Mycoplasma epidemic which recently swept the eastern range of this species. [source]


Sampling within the genome for measuring within-population diversity: trade-offs between markers

MOLECULAR ECOLOGY, Issue 7 2002
S. Mariette
Abstract Experimental results of diversity estimates in a set of populations often exhibit contradictory patterns when different marker systems are used. Using simulations we identified potential causes for these discrepancies. These investigations aimed also to detect whether different sampling strategies of markers within the genome resulted in different estimates of the diversity at the whole genome level. The simulations consisted in generating a set of populations undergoing various evolutionary scenarios which differed by population size, migration rate and heterogeneity of gene flow. Population diversity was then computed for the whole genome and for subsets of loci corresponding to different marker techniques. Rank correlation between the two measures of diversity were investigated under different scenarios. We showed that the heterogeneity of genetic diversity either between loci (genomic heterogeneity, GH) or among populations (population heterogeneity, PH) varied greatly according to the evolutionary scenario considered. Furthermore, GH and PH were major determinants of the level of rank correlation between estimates of genetic diversities obtained using different kinds of markers. We found a strong positive relationship between the level of the correlation and PH, whatever the marker system. It was also shown that, when GH values were constantly low during generations, a reduced number of microsatellites was enough to predict the diversity of the whole genome, whereas when GH increased, more loci were needed to predict the diversity and amplified fragment length polymorphism markers would be more recommended in this case. Finally the results are discussed to recommend strategies for gene diversity surveys. [source]


Use of cDNA-AFLP for transcript profiling in narrow genetic pools; for example, cucumber (Cucumis sativus L.)

PLANT BREEDING, Issue 5 2006
K. M. Bae
Abstract A cDNA-AFLP transcript profiling was employed to examine three representative tissues (seedling, ovary and leaf) of nine Korean cucumber (Cucumis sativus L.) F1 hybrids. Differential accumulation of transcript-derived fragments (TDFs) was detected in 92 profiles. Genetic distance-based cluster analysis partitioned these hybrids into four main groupings, consistent with their phenotypic relationships. Although several polymorphic profiles were confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) analysis, many were not reproducible, indicating that a large portion of the observed polymorphisms were based on sequence variation of transcripts rather than expression of variation. Thus, it is proposed that cDNA-AFLP profiling be based on a dual descriptor system (sequence and expression). Data indicate that such a system would provide an efficient genetic marker system for identifying polymorphisms in narrow genetic pools. [source]


Experimental population design for estimation of dominant molecular marker effect on egg-production traits

ANIMAL GENETICS, Issue 5 2003
M. G. Kaiser
Summary A potential limitation of the use of a dominant molecular marker system such as DNA fingerprinting (DFP) is the inability to distinguish homozygous from heterozygous allele state in an individual, and a resulting inaccuracy in estimating effects of the marker alleles. The objective of this study was to accurately estimate the effect of DFP markers on egg-production traits. A BC1 population was produced from two distinct layer lines. Four DFP bands, each originating predominantly in one of the two parental lines, were evaluated for linkage with egg-production quantitative trait loci in the BC1 population. The egg-production traits consisted of eight early period and seven late period measurements. Eight marker-trait linkages were identified out of 60 total statistical tests. By utilizing information on frequency of DFP bands in two parental lines, selecting F1 sires with DFP bands present, and backcrossing to the line lacking these bands, the population design allowed definitive identification of the DFP zygosity in the BC1 resource population hens. In this manner, accurate estimates of marker allele effects on egg-production traits were obtained from the dominant marker system of DNA fingerprinting. [source]


Refining the results of a whole-genome screen based on 4666 microsatellite markers for defining predisposition factors for multiple sclerosis

ELECTROPHORESIS, Issue 14 2004
René Gödde
Abstract Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a complex genetic background. In order to identify loci associated with the disease, we had performed a genome screen initially using 6000 microsatellite markers in pooled DNA samples of 198 MS patients and 198 controls. Here, we report on the detailed reanalysis of this set of data. Distinctive features of microsatellites genotyped in pooled DNA causing false-positive association or masking existing association were met by improved evaluation and refined correction factors in the statistical analyses. In order to assess potential errors introduced by DNA pooling and genotyping, we resurveyed the experiment in a subset of microsatellite markers using de novo -composed DNA pools. True MS associations of markers were verified via genotyping all individual DNA samples comprised in the pools. Microsatellites share characteristically superb information content but they do not lend themselves to automation in very large scale formats. Especially after DNA pooling many artifacts of individual marker systems require special attention and treatment. Therefore, in the near future comprehensive whole-genome screens may rather be performed by typing single nucleotide polymorphisms on chip-based platforms. [source]


Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient

INSECT MOLECULAR BIOLOGY, Issue 4 2002
O. P. Perera
Abstract Stable and efficient germ-line transformation was achieved in the South American malaria vector, Anopheles albimanus, using a piggyBac vector marked with an enhanced green fluorescent protein gene regulated by the Drosophila melanogaster polyubiquitin promoter. Transgenic mosquitoes were identified from four independent experiments at frequencies ranging from 20 to 43% per fertile G0. Fluorescence was observable throughout the body of larvae and pupae, and abdominal segments of adults. Transgenic lines analysed by Southern hybridization had one to six germ-line integrations, with most lines having three or more integrations. Hybridized transposon vector fragments and insertion site sequences were consistent with precise piggyBac -mediated integrations, although this was not verified for all lines. The piggyBac/PUbnlsEGFP vector appears to be a robust transformation system for this anopheline species, in contrast to the use of a piggyBac vector in An. gambiae. Further tests are needed to determine if differences in anopheline transformation efficiency are due to the marker systems or to organismal or cellular factors specific to the species. [source]


Molecular marker systems in insects: current trends and future avenues

MOLECULAR ECOLOGY, Issue 11 2006
SUSANTA K. BEHURA
Abstract Insects comprise the largest species composition in the entire animal kingdom and possess a vast undiscovered genetic diversity and gene pool that can be better explored using molecular marker techniques. Current trends of application of DNA marker techniques in diverse domains of insect ecological studies show that mitochondrial DNA (mtDNA), microsatellites, random amplified polymorphic DNA (RAPD), expressed sequence tags (EST) and amplified fragment length polymorphism (AFLP) markers have contributed significantly for progresses towards understanding genetic basis of insect diversity and for mapping medically and agriculturally important genes and quantitative trait loci in insect pests. Apart from these popular marker systems, other novel approaches including transposon display, sequence-specific amplification polymorphism (S-SAP), repeat-associated polymerase chain reaction (PCR) markers have been identified as alternate marker systems in insect studies. Besides, whole genome microarray and single nucleotide polymorphism (SNP) assays are becoming more popular to screen genome-wide polymorphisms in fast and cost effective manner. However, use of such methodologies has not gained widespread popularity in entomological studies. The current study highlights the recent trends of applications of molecular markers in insect studies and explores the technological advancements in molecular marker tools and modern high throughput genotyping methodologies that may be applied in entomological researches for better understanding of insect ecology at molecular level. [source]


Sampling within the genome for measuring within-population diversity: trade-offs between markers

MOLECULAR ECOLOGY, Issue 7 2002
S. Mariette
Abstract Experimental results of diversity estimates in a set of populations often exhibit contradictory patterns when different marker systems are used. Using simulations we identified potential causes for these discrepancies. These investigations aimed also to detect whether different sampling strategies of markers within the genome resulted in different estimates of the diversity at the whole genome level. The simulations consisted in generating a set of populations undergoing various evolutionary scenarios which differed by population size, migration rate and heterogeneity of gene flow. Population diversity was then computed for the whole genome and for subsets of loci corresponding to different marker techniques. Rank correlation between the two measures of diversity were investigated under different scenarios. We showed that the heterogeneity of genetic diversity either between loci (genomic heterogeneity, GH) or among populations (population heterogeneity, PH) varied greatly according to the evolutionary scenario considered. Furthermore, GH and PH were major determinants of the level of rank correlation between estimates of genetic diversities obtained using different kinds of markers. We found a strong positive relationship between the level of the correlation and PH, whatever the marker system. It was also shown that, when GH values were constantly low during generations, a reduced number of microsatellites was enough to predict the diversity of the whole genome, whereas when GH increased, more loci were needed to predict the diversity and amplified fragment length polymorphism markers would be more recommended in this case. Finally the results are discussed to recommend strategies for gene diversity surveys. [source]


Y-chromosome and mitochondrial DNA studies on the population structure of the Christmas Island community

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2005
Cheryl A. Wise
Abstract Christmas Island is a remote Australian territory located close to the main Indonesian island of Java. Y-chromosome and mitochondrial DNA (mtDNA) markers were used to investigate the genetic structure of the population, which comprises communities of mixed ethnic origin. Analysis of 12 Y-chromosome biallelic polymorphisms revealed a high level of gene diversity and haplotype frequencies that were consistent with source populations in southern China and Southeast Asia. mtDNA hypervariable segment I (HVS-I) sequences displayed high levels of haplotype diversity and nucleotide diversity that were comparable to various Asian populations. Genetic distances revealed extremely low mtDNA differentiation among Christmas Islanders and Asian populations. This was supported by the relatively high proportion of sequence types shared among these populations. The most common mtDNA haplogroups were M* and B, followed by D and F, which are prevalent in East/Southeast Asia. Christmas Islanders of European descent were characterized by the Eurasian haplogroup R*, and a limited degree of admixture was observed. In general, analysis of the genetic data indicated population affinities to southern Chinese (in particular from the Yunnan Province) and Southeast Asia (Thailand, Malaysia, and Cambodia), which was consistent with historical records of settlement. The combined use of these different marker systems provides a useful and appropriate model for the study of contemporary populations derived from different ethnic origins. Am J Phys Anthropol, 2005. © 2005 Wiley-Liss, Inc. [source]


Genetic variability of Old Portuguese bread wheat cultivars assayed by IRAP and REMAP markers

ANNALS OF APPLIED BIOLOGY, Issue 3 2010
A. Carvalho
Retrotransposons (RTNs) constitute informative molecular markers for plant species as a result of their ability of integrating into a multitude of loci throughout the genome and thereby generating insertional polymorphisms between individuals. Inter-retrotransposon amplified polymorphisms (IRAPs) and the retrotransposon-microsatellite amplified polymorphisms (REMAPs) are marker systems based on long terminal repeats (LTRs) RTNs, developed for plants, that have been widely used for evolution, genetic diversity, DNA fingerprinting of cultivars and varieties, genetic mapping linkage and for detection of genetic rearrangements induced by polyploidisation. In the present study, we aimed to analyse the genetic variability among 48 Old Portuguese bread wheat cultivars using both IRAP and REMAP markers. Five IRAP and six REMAP primer combinations were used. IRAP produced 103 polymorphic fragments in a total of 113 bands. On average, 22.6 bands were amplified per IRAP primer combination. The bands ranged in size from 250 to 5000 bp. The REMAP primer combinations allowed the amplification of 53 bands, 51 of them polymorphic. An average of 8.8 REMAP bands was scored per primer combination. The REMAP bands ranged from 250 to 3000 bp. Both marker systems presented high percentages of polymorphism. However, IRAP markers were suitable for detecting genetic variability at the individual level and did not differentiate higher taxa. The REMAP maker system allowed the clustering by botanical variety and identified most of the homonym bread wheat cultivars. [source]


A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata) germplasm characterization

ANNALS OF APPLIED BIOLOGY, Issue 3 2003
H D MIGNOUNA
Summary Several DNA-based marker systems are available for genetic fingerprinting of plants but information on their relative usefulness for yam germplasm characterisation is lacking. The efficiency of RAPD, AFLP and SSR markers for the assessment of genetic relationships, and for cultivar identification and discrimination among 45 West and Central African white yam cultivars belonging to 22 morphotypes/cultivar groups was investigated. Dendrograms were produced based on band pattern scores using the UPGMA method. Results showed that each of the three techniques could unequivocably identify each cultivar, but that techniques differed in the mean number of profiles generated per primer (or primer pair) per cultivar, referred to as genotype index (GI). The order of merit based on this criterion in this study was AFLPs (GI = 2.56), SSRs (GI = 0.39) and RAPDs (GI = 0.35). Yam genotypes classified in the same cultivar group based on morphology were often genetically different, emphasising the need for molecular fingerprinting in yam germplasm characterisation. AFLPs showed the highest efficiency in detecting polymorphism and revealed genetic relationships that most closely reflected morphological classification. [source]


Gene flow and melanism in garter snakes revisited: a comparison of molecular markers and island vs. coalescent models

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2003
TONYA D. BITTNER
Within populations, the stochastic effect of genetic drift and deterministic effect of natural selection are potentially weakened or altered by gene flow among populations. The influence of gene flow on Lake Erie populations of the common garter snake has been of particular interest because of a discontinuous colour pattern polymorphism (striped vs. melanistic) that is a target of natural selection. We reassessed the relative contributions of gene flow and genetic drift using genetic data and population size estimates. We compared all combinations of two marker systems and two analytical approaches to the estimation of gene flow rates: allozymes (data previously published), microsatellite DNA (new data), the island model (FST -based approach), and a coalescence-based approach. For the coalescence approach, mutation rates and sampling effects were also investigated. While the two markers produced similar results, gene flow based on FST was considerably higher (Nm > 4) than that from the coalescence-based method (Nm < 1). Estimates of gene flow are likely to be inflated by lack of migration-drift equilibrium and changing population size. Potentially low rates of gene flow (Nm < 1), small population size at some sites, and positive correlations of number of microsatellite DNA alleles and island size and between M, mean ratio of number of alleles to range in allele size, and island size suggest that in addition to selection, random genetic drift may influence colour pattern frequencies. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 79, 389,399. [source]