Home About us Contact | |||
Marker Sequences (marker + sequence)
Selected AbstractsTAXONOMIC REEXAMINATION OF 17 SPECIES OF NITELLA SUBGENUS TIEFFALLENIA (CHARALES, CHAROPHYCEAE) BASED ON INTERNAL MORPHOLOGY OF THE OOSPORE WALL AND MULTIPLE DNA MARKER SEQUENCES,JOURNAL OF PHYCOLOGY, Issue 1 2005Hidetoshi Sakayama In an attempt to reconstruct the natural taxonomic system for Nitella, 17 species of Nitella subgenus Tieffallenia were reexamined using SEM observations of the internal morphology of the oospore wall (IMOW) and phylogenetic analyses of 4553 base pairs from multiple DNA markers (atpB, rbcL, psaB, and ITS-5.8S rRNA genes). Our SEM observations identified three types of IMOW: homogeneous (HG), weakly spongy (W-SG), and strongly spongy (S-SG) types. Based on differences in the IMOW, species with reticulate or tuberculate oospore wall ornamentation in the external morphology of the oospore wall (EMOW) were subdivided into two distinct groups (characterized by the HG or S-SG types of IMOW, respectively), which were robustly separated from each other in our molecular phylogenetic analyses. In our molecular phylogeny, the subgenus Tieffallenia consisted of four robust monophyletic groups,three clades of the HG type and a spongy (S-SG and W-SG) type clade,that were characterized by differences in the IMOW and EMOW. In addition, our SEM observations and sequence data verified the distinct status of five species (N. japonica Allen, N. oligospira A. Braun, N. vieillardii stat. nov., N. imperialis stat. nov., and N. morongii Allen) that R. D. Wood had assigned as infraspecific taxa. Moreover, our SEM observations of the IMOW also suggested that N. megaspora (J. Groves) Sakayama originally identified by LM includes at least two distinct species, characterized by W-SG and S-SG types of IMOW, respectively. [source] Construction and evaluation of a porcine bacterial artificial chromosome libraryANIMAL GENETICS, Issue 1 2000K Suzuki Summary A porcine bacterial artificial chromosome (BAC) library consisting of 103 488 clones has been constructed. The average insert size in the BAC vector was calculated to be 133 kb based on the examination of 189 randomly selected clones, indicating that the library contained 4.4 genome equivalents. The library can be screened by two-step PCR. The first screening step is performed on 22 superpools, each containing 4704 clones (49×96 well plates). In the second screening step, 49 plates comprising a superpool are arrayed in a 7×7 matrix and 4D-PCR is performed. Screening of the library superpools by PCR for 125 marker sequences selected from different regions of swine genome revealed 123 sequences, indicating that the library is not biased. Subsequent screenings (4D-PCR) were successfully applied for identification of clones containing each marker sequence. This porcine BAC library and the PCR screening system are useful for isolation of genomic DNA fragments containing desired sequences. [source] Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx moriINSECT MOLECULAR BIOLOGY, Issue 4 2005H. Abe Abstract In the silkworm, Bombyx mori (female, ZW; male, ZZ), femaleness is determined by the presence of a single W chromosome, irrespective of the number of autosomes or Z chromosomes. The W chromosome is devoid of functional genes, except the putative female-determining gene (Fem). However, there are strains in which chromosomal fragments containing autosomal markers have been translocated on to W. In this study, we analysed the W chromosomal regions of the Zebra-W strain (T(W;3)Ze chromosome) and the Black-egg-W strain (T(W;10)+w,2 chromosome) at the molecular level. Initially, we undertook a project to identify W-specific RAPD markers, in addition to the three already established W-specific RAPD markers (W-Kabuki, W-Samurai and W-Kamikaze). Following the screening of 3648 arbitrary 10-mer primers, we obtained nine W-specific RAPD marker sequences (W-Bonsai, W-Mikan, W-Musashi, W-Rikishi, W-Sakura, W-Sasuke, W-Yukemuri-L, W-Yukemuri-S and BMC1-Kabuki), almost all of which contained the border regions of retrotransposons, namely portions of nested retrotransposons. We confirmed the presence of eleven out of twelve W-specific RAPD markers in the normal W chromosomes of twenty-five silkworm strains maintained in Japan. These results indicate that the W chromosomes of the strains in Japan are almost identical in type. The Zebra-W strain (T(W;3)Ze chromosome) lacked the W-Samurai and W-Mikan RAPD markers and the Black-egg-W strain (T(W;10)+w,2 chromosome) lacked the W-Mikan RAPD marker. These results strongly indicate that the regions containing the W-Samurai and W-Mikan RAPD markers or the W-Mikan RAPD marker were deleted in the T(W;3)Ze and T(W;10)+w,2 chromosomes, respectively, due to reciprocal translocation between the W chromosome and the autosome. This deletion apparently does not affect the expression of Fem; therefore, this deleted region of the W chromosome does not contain the putative Fem gene. [source] Construction and evaluation of a porcine bacterial artificial chromosome libraryANIMAL GENETICS, Issue 1 2000K Suzuki Summary A porcine bacterial artificial chromosome (BAC) library consisting of 103 488 clones has been constructed. The average insert size in the BAC vector was calculated to be 133 kb based on the examination of 189 randomly selected clones, indicating that the library contained 4.4 genome equivalents. The library can be screened by two-step PCR. The first screening step is performed on 22 superpools, each containing 4704 clones (49×96 well plates). In the second screening step, 49 plates comprising a superpool are arrayed in a 7×7 matrix and 4D-PCR is performed. Screening of the library superpools by PCR for 125 marker sequences selected from different regions of swine genome revealed 123 sequences, indicating that the library is not biased. Subsequent screenings (4D-PCR) were successfully applied for identification of clones containing each marker sequence. This porcine BAC library and the PCR screening system are useful for isolation of genomic DNA fragments containing desired sequences. [source] |