Home About us Contact | |||
Marker Enzymes (marker + enzyme)
Kinds of Marker Enzymes Selected AbstractsMelatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian ratsJOURNAL OF PINEAL RESEARCH, Issue 2 2008Chun-Hung Lin Abstract:, Parkinson's disease (PD) is a movement disorder resulting from nigrostriatal dopaminergic neurodegeneration. The impairment of mitochondrial function and dopamine synaptic transmission are involved in the pathogenesis of PD. Two mitochondrial inhibitors, 1-methyl-4-phenylpyridine (MPP+) and rotenone, have been used to induce dopaminergic neuronal death both in in vitro and in vivo models of PD. Because the uptake of MPP+ is mediated by the dopamine transporter (DAT), we used a cell-permeable rotenone-induced PD model to investigate the role of DAT and dopamine D2 receptor (D2R) on dopaminergic neuronal loss. Rotenone subcutaneously infused for 14 days induced PD symptoms in rats, as indicated by reduced spontaneous locomotor activity (hypokinesis), loss of tyrosine hydroxylase (TH, a marker enzyme for dopamine neurons) immunoreactivity in the substantia nigra and striatum, obvious ,-synuclein accumulation, downregulated DAT protein expression, and upregulated D2R expression. Interestingly, rotenone also caused significant noradrenergic neuronal loss in the locus coeruleus. Melatonin, an antioxidant, prevented nigrostriatal neurodegeneration and ,-synuclein aggregation without affecting the rotenone-induced weight loss and hypokinesis. However, rotenone-induced hypokinesis was markedly reversed by the DAT antagonist nomifensine and body weight loss was attenuated by the D2R antagonist sulpiride. In addition, both antagonists significantly prevented the reduction of striatal TH or DAT immunoreactivity but not the loss of nigral TH- and DAT-immunopositive neurons. These results suggested that oxidative stress and DAT downregulation are involved in the rotenone-induced pathogenesis of nigrostriatal dopaminergic neurodegeneration, whereas D2R upregulation may simply represent a compensatory response. [source] Salt- and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea)PHYSIOLOGIA PLANTARUM, Issue 4 2002Mukesh Jain Glyoxalase I (EC 4.4.1.5) activity has long been associated with rapid cell proliferation, but experimental evidence is forthcoming, linking its role to stress tolerance as well. Proliferative callus cultures of groundnut (Arachis hypogaea L. cv. JL24) showed a 3.3-fold increase in glyoxalase I activity during the logarithmic growth phase, correlating well with the data on FW gain and mitotic index. Inhibition of cell division decreased glyoxalase I activity and vice versa, thus further corroborating its role as a cell division marker enzyme. Cell lines of A. hypogaea selected in the presence of high salt (NaCl) and herbicide (glyphosate) concentrations, yielded 4.2- to 4.5-fold and 3.9- to 4.6-fold elevated glyoxalase I activity, respectively, in a dose dependent manner reflective of the level of stress tolerance. The stress-induced increase in enzyme activity was also accompanied by an increase in the glutathione content. Exogenous supplementation of glutathione could partially alleviate the growth inhibition of callus cultures induced by methylglyoxal and d -isoascorbic acid, but failed to recover the loss in glyoxalase I activity due to d -isoascorbic acid. The adaptive significance of elevated glyoxalase I activity in maintaining glutathione homeostasis has been discussed in view of our understanding on the role of glutathione in the integration of cellular processes with plant growth and development under stress conditions. [source] Hematotoxic and hepatotoxic effects of dichlorvos at sublethal dosages in ratsENVIRONMENTAL TOXICOLOGY, Issue 2 2009Ismail Celik Abstract The present study was designed to understand the effects of sublethal concentrations of dichlorvos (DIC) on hematological constituent [red blood corpuscles, white blood corpuscles (WBC), mean cell volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, platelet counts, hemoglobin and hematocrite levels] and serum damage marker enzymes (aspartate aminotransferase, alanin aminotransferase, alkaline phosphatase, and lactate dehydrogenase) in rats at subacute period under laboratory conditions. DIC at dosages of 5 and 10 ppm was administered orally to six male rats ad libitum during the tests for 4 weeks consecutively. According to the results, DIC treatments increased significantly the levels of serum marker enzyme activities, whereas they did not change hematologic constituent except for WBC number treated with both dosages of DIC. The observations presented led us to conclude that the administrations of subacute DIC induced the levels of damage marker enzymes and leukocytosis. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009. [source] Hepatoprotective activity of picroliv, curcumin and ellagic acid compared to silymarin on paracetamol induced liver toxicity in miceFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2009C. Girish Abstract Oxidative stress is implicated as a common pathologic mechanism contributing to the initiation and progression of hepatic damage in a variety of liver disorders. Present study attempts to evaluate the hepatoprotective activity of picroliv, curcumin and ellagic acid in comparison to silymarin using paracetamol (PCM) induced acute liver damage. Hepatotoxicity was induced by administering a single oral dose of PCM (500 mg/kg) and was assessed by quantifying the serum enzyme activities, phenobarbitone induced sleeping time and histopathological analysis of liver tissues. The antioxidant parameters, malondialdehyde (MDA), reduced glutathione (GSH) and catalase of the liver tissue were also assessed. The herbal drugs were administered for 7 days by oral route at 50 and 100 mg/kg. PCM induced hepatic damage was manifested by a significant increase in the activities of marker enzymes (alanine transaminase, aspartate transaminase and alkaline phosphatase) in serum and MDA level in liver. There was also a significant decrease in activity of GSH and catalase levels. The histopathological examination on toxic models revealed centrizonal necrosis and fatty changes. Pretreatment of mice with picroliv, curcumin and ellagic acid reversed these altered parameters towards normal values, which were compared with silymarin. The normalization of phenobarbitone induced sleeping time suggests the restoration of liver cytochrome P450 enzymes. This study supports the use of these active phytochemicals against toxic liver injury, which may act by preventing the lipid peroxidation and augmenting the antioxidant defense system or regeneration of hepatocytes. These active phytochemicals may be developed as drugs for the treatment of liver diseases. [source] Mechanisms involved in the photosensitized inactivation of Acanthamoeba palestinensis trophozoitesJOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2009S. Ferro Abstract Aims:, To advance our understanding of the mechanisms involved in the RLP068 phthalocyanine-photosensitized inactivation of Acanthamoeba palestinensis trophozoites through a precise identification of the targets of the photoprocess in both the cytosolic and mitochondrial compartments. Methods and Results:, We followed the activities of selected marker enzymes as well as we performed fluorescence and transmission electron microscopy investigations of the alterations induced by the photoprocess in the fine structure of subcellular compartments. RLP068 is preferentially located in the contractile vacuole: the fluorescence in that site is particularly evident in the unirradiated cells and becomes more diffused after irradiation. Electron microscopic analysis of photosensitized A. palestinensis cells clearly shows that the swelling of trophozoites and the appearance of vacuoles spread throughout the cytoplasm after phototreatment. The activity of a typical cytoplasmic enzyme, such as lactate dehydrogenase, underwent a 35% decrease as a consequence of the photoprocess, reflecting the photodamage induced by migrating phthalocyanine molecules in their micro-environment. Conclusions:, The presence of multiple targets for the phthalocyanine-photosensitized process is of utmost importance because this pattern of cell damage makes it unlikely that photoresistant A. palestinensis strains are gradually selected or mutagenic phenomena are developed as a consequence of the photoinduced damage. Significance and Impact of the Study:, Photosensitization via phthalocyanines appears to represent an efficient and safe approach for achieving a close control of the population of a potentially pathogenic protozoan such as A. palestinensis, opening new perspectives for the disinfection of microbiologically polluted waters. [source] Modulatory potential of ellagic acid, a natural plant polyphenol on altered lipid profile and lipid peroxidation status during alcohol-induced toxicity: A pathohistological studyJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 2 2008Nagarajan Devipriya Abstract Polyphenol-rich dietary foodstuffs, consumed as an integral part of vegetables, fruits, and beverages have attracted attention due to their antioxidant and anticancer properties. Ellagic acid (EA), a polyphenolic compound widely distributed in fruits and nuts, has been reported to scavenge free radicals and inhibit lipid peroxidation. Chronic consumption of alcohol potentially results in serious illness including hepatitis, fatty liver, hypertriglyceridemia, and cirrhosis. A little is known about the influence of EA on alcohol toxicity in vivo. Accordingly, in the present study, we have evaluated the protective effects of EA on lipid peroxidation and lipid levels during alcohol-induced toxicity in experimental rats. Forty female albino Wistar rats, which were weighing between 150,170 g were used for the study. The toxicity was induced by administration of 20% alcohol orally (7.9 g/kg body wt.) for 45 days. Rats were treated with EA at three different doses (30, 60, and 90 mg/kg body wt.) via intragastric intubations together with alcohol. At the end of experimental duration, liver marker enzymes (i.e., aspartate transaminase, alanine transaminase), lipid peroxidative indices (i.e., thiobarbituriacid reactive substances and hydroperoxides) in plasma, and lipid levels (i.e., cholesterol, free fatty acids, triglycerides and phospholipids) in tissues were analyzed to evaluate the antiperoxidative and antilipidemic effects of EA. Liver marker enzymes, lipid peroxidative indices, and lipid levels, i.e., cholesterol, triglycerides and free fatty acids, were significantly increased whereas phospholipid levels were significantly decreased in the alcohol-administered group. EA treatment resulted in positive modulation of marker enzymes, peroxidative indices, and lipid levels. EA at the dose of 60 mg/kg body wt. was found to be more effective when compared to the other two doses. Histological changes observed were also inconsistent with the biochemical parameters. Our study suggests that EA exerts beneficial effects at the dosage of 60 mg/kg body wt. against alcohol-induced damage, and it can be used as a potential drug for the treatment of alcohol-abuse ailments in the near future. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:101,112, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20226 [source] Galactosamine-induced hepatotoxic effect and hepatoprotective role of a protein isolated from the herb Cajanus indicus L in vivo,JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2007Prasenjit Manna Abstract dd(+)-Galactosamine is a well-known experimental hepatotoxin. The present study was conducted to determine the protective role of a 43-kD protein isolated from the leaves of the herb Cajanus indicus L against dd(+)-galactosamine (GalN) induced liver damage in mice. Both preventive and curative effects of the protein have been investigated in the study. The protein was administered intraperitoneally at a dose of 2 mg/kg body weight for 4 days before and after GalN intoxication at a dose of 800 mg/kg body weight for 3 days. The increased activities of serum marker enzymes, alanine aminotransferase, and alkaline phosphatase because of GalN administration, were significantly reduced by the protein treatment. The protein also normalized the altered activities of antioxidant enzymes superoxide dismutase, catalase, glutathione reductase, and glutathione- S -transferase as well as the levels of cellular metabolites, reduced glutathione, glutathione disulfide, and total thiols. In addition, the enhanced hepatic lipid peroxidation because of GalN intoxication was also effectively inhibited by the protein treatment. Results suggest that GalN caused hepatic damages via oxidative insult and that the protein provided protection through its antioxidant mechanism. © 2007 Wiley Periodicals, Inc. J Biochem Mol Toxicol 21:13,23, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20154 [source] Influence of subacute treatment of some plant growth regulators on serum marker enzymes and erythrocyte and tissue antioxidant defense and lipid peroxidation in ratsJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2006Ismail Celik Abstract This study aims to investigate the effects of the plant growth regulators (PGRs) (2,3,5-triiodobenzoic acid (TIBA), Naphthaleneacetic acid (NAA), and 2,4-dichlorofenoxyacetic acid (2,4-D)) on serum marker enzymes (aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH)), antioxidant defense systems (reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST), and catalase (CAT)), and lipid peroxidation content (malondialdehyde = MDA) in various tissues of rats. 50 and 100 ppm of PGRs as drinking water were administered orally to rats (Sprague,Dawley albino) ad libitum for 25 days continuously. The PGRs treatment caused different effects on the serum marker enzymes, antioxidant defense systems, and the MDA content in experimented rats compared to controls. Results showed that TIBA caused a significant decrease in serum AST activity with both the dosage whereas serum CPK was significantly increased with 100 ppm dosage of TIBA. Meanwhile, serum AST, CPK, and LDH activities were significantly increased with both dosage of NAA and 2,4-D. The lipid peroxidation end-product MDA significantly increased in the all tissues treated with both dosages of PGRs without any change in the brain and erythrocyte of rats treated with both the dosages of 2,4-D. The GSH depletion in the kidney and brain tissues of rats treated with both dosages of PGRs was found to be significant. Furthermore, the GSH depletion in the erythrocyte of rats treated with both dosages of PGRs except 50 ppm dosage of 2,4-D was significant too. Also, the GSH level in the liver was significantly depleted with 50 ppm of 2,4-D and NAA, whereas the GSH depletion in the same tissue did not significantly change with the treatment. The activity of antioxidant enzymes was also seriously affected by PGRs; SOD significantly decreased in the liver, heart, kidney, and brain of rats treated with both dosages of NAA, whereas the SOD activity in the erythrocytes, liver, and heart was either significantly decreased or not changed with two doses of 2,4-D and TIBA. Although the CAT activity significantly increased in the erythrocyte and brain of rats treated with both doses of PGRs, it was not changed in the liver, heart, and kidney. Meanwhile, the ancillary enzyme GR activity significantly increased in the brain, heart, and liver but decreased in the erythrocyte and kidney of rats treated with both doses of PGRs. The drug-metabolizing enzyme GST activity significantly increased in the heart and kidney but decreased in the brain and erythrocytes of rats treated with both dosages of PGRs. As a conclusion, the results indicate that PGRs might affect antioxidant potential enzymes, the activity of hepatic damage enzymes, and lipid peroxidation dose independently. Also, the rats resisted to oxidative stress via antioxidant mechanism but the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. These data, along with the determined changes, suggest that PGRs produced substantial systemic organ toxicity in the erythrocyte, liver, brain, heart, and kidney during the period of a 25-day subacute exposure. © 2006 Wiley Periodicals, Inc. J Biochem Mol Toxicol 20:174,182, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20134 [source] Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in miceJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 5 2010Mahaboob Khan Rasool Abstract Objectives The aim of this research paper was to investigate the hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice. Methods In the present study, the hepatoprotective and antioxidant effects of gallic acid were evaluated against paracetamol-induced hepatotoxicity in mice and compared with the silymarin, a standard hepatoprotective drug. The mice received a single dose of paracetamol (900 mg/kg body weight i.p.). Gallic acid (100 mg/kg body weight i.p.) and silymarin (25 mg/kg body weight i.p.) were administered 30 min after the injection of paracetamol. After 4 h, liver marker enzymes (aspartate transaminase, alanine transaminase and alkaline phosphatase) and inflammatory mediator tumour necrosis factor-alpha (TNF-,) were estimated in serum, while the lipid peroxidation and antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione- S -transferase and glutathione) were determined in liver homogenate of the control and experimental mice. Key findings Increased activities of liver marker enzymes and elevated TNF-, and lipid peroxidation levels were observed in mice exposed to paracetamol (P < 0.05), whereas the antioxidant status was found to be depleted (P < 0.05) when compared with the control group. However gallic acid treatment (100 mg/kg body weight i.p.) significantly reverses (P < 0.05) the above changes by its antioxidant action compared to the control group as observed in the paracetamol-challenged mice. Conclusions The results clearly demonstrate that gallic acid possesses promising hepatoprotective effects. [source] Antioxidant effect of 2-hydroxy-4-methoxy benzoic acid on ethanol-induced hepatotoxicity in ratsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2007Nadana Saravanan Alcoholic liver disease (ALD) is one of the most common diseases in society. A large number of studies are in progress to identify natural substances that are effective in reducing the severity of ALD. 2-Hydroxy-4-methoxy benzoic acid (HMBA), the active principle of Hemidesmus indicus, an indigenous Ayurvedic medicinal plant in India, is expected to significantly inhibit the development of liver injury in ethanol administration. It is expected to reduce the severity of liver damage in terms of body weight, hepatic marker enzymes, oxidative stress, antioxidant status and histological changes in ethanol-induced hepatotoxic rats. Hepatotoxicity was induced by administering 20% ethanol (5 g kg,1 daily) for 60 days to male Wistar rats, which resulted in significantly decreased body weight and an increase in liver-body weight ratio. The liver marker enzymes aspartate transaminase, alanine transaminase, alkaline phosphatase, ,-glutamyl transpeptidase and lactate dehydrogenase were elevated. In addition, the levels of plasma, erythrocyte and hepatic thiobarbituric acid reactive substances, hydroperoxides and conjugated dienes were also elevated in ethanol-fed rats as compared with those of the experimental control rats. Decreased activity of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, vitamin C and ,-tocopherol was also observed on alcohol administration as compared with experimental control rats. HMBA was co-administered at a dose of 200 ,gkg,1 daily for the last 30 days of the experiment to rats with alcohol-induced liver injury, which significantly increased body weight, significantly decreased the liver-body weight ratio, transaminases, alkaline phosphatase, ,-glutamyl transpeptidase and lactate dehydrogenase, significantly decreased the levels of lipid peroxidative markers, significantly elevated the activity of enzymic and non-enzymic antioxidants in plasma, erythrocytes and liver and also increased levels of plasma and liver vitamin C and ,-tocopherol at the end of the experimental period as compared with untreated ethanol-administered rats. The histological changes were also in correlation with the biochemical findings. The results suggest that HMBA administration may afford protection against ethanol-induced liver injury in rats. [source] Protective effect of Nardostachys jatamansi on oxidative injury and cellular abnormalities during doxorubicin-induced cardiac damage in ratsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2006Rajakannu Subashini Nardostachys jatamansi is a medicinally important herb of Indian origin. It has been used for centuries in the Ayurvedic and Unani systems of medicine for the treatment of various ailments. We have evaluated the effect of N. jatamansi (rhizomes) on the biochemical changes, tissue peroxidative damage and abnormal antioxidant levels in doxorubicin (adriamycin)-induced cardiac damage. Preliminary studies on the effect of the graded dose of extract showed that 500 mg kg,1 orally for seven days was found to be optimum and hence all further study was carried out with this particular dose. Rats administered doxorubicin (15 mg kg,1, i.p.) showed myocardial damage that was manifested by the elevation of serum marker enzymes (lactate dehydrogenase, creatine phosphokinase, aspartate aminotransaminase and alanine aminotransaminase). The animals showed significant changes in the antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase) and lipid peroxidation levels. Pretreatment with N. jatamansi extract significantly prevented these alterations and restored the enzyme activity and lipid peroxides to near normal levels. Restoration of cellular normality accredits the N. jatamansi with a cytoprotective role in doxorubicin-induced cardiac damage. [source] Induction of Systemic Acquired Resistance in Arachis hypogaea L. by Sclerotium rolfsii Derived ElicitorsJOURNAL OF PHYTOPATHOLOGY, Issue 9 2010Durgesh Nandini Abstract Plants evolve a strategy to survive the attacks of potential pathogens by inducing the microbial signal molecules. In this study, plant defence responses were induced in four different varieties of Arachis hypogaea (J-11, GG-20, TG-26 and TPG41) using the fungal components of Sclerotium rolfsii in the form of fungal culture filtrate (FCF) and mycelial cell wall (MCW), and the levels of defence-related signal molecule salicylic acid (SA), marker enzymes such as peroxidase (POX), phenylalanine ammonia lyase (PAL), ,-1,3-glucanase and lignin were determined. There was a substantial fold increase in POX, PAL, SA, ,-1,3-glucanase and lignin content in FCF- and MCW-treated plants of all varieties of groundnut when compared to that of control plants. The enzyme activities were much higher in FCF-treated plants than in MCW-treated plants. The increase in fold activity of enzymes and signal molecule varied between different varieties. These results indicate that the use of fungal components (FCF and MCW) had successfully induced systemic resistance in the four different varieties of groundnut plants against Sclerotium rolfsii. [source] Cardioprotective potential of myricetin in isoproterenol-induced myocardial infarction in wistar ratsPHYTOTHERAPY RESEARCH, Issue 10 2009Roshan Tiwari Abstract The study aimed to evaluate the protective role of myricetin obtained from Vitis vinifera (Vitaceae) on heart rate, electrocardiographic (ECG) patterns, vascular reactivity to catecholamines, cardiac marker enzymes, antioxidant enzymes together with morphological and histopathological changes in isoproterenol (ISO) induced myocardial infarction (MI) in male Wistar rats. Rats treated with isoproterenol (85 mg/kg, administered subcutaneously twice at an interval of 24 h) showed a significant increase in heart rate and ST elevation in ECG, and a significant increase in the levels of cardiac marker enzymes , lactate dehydrogenase (LDH), creatine kinase (CK) and aspartate aminotransferase (AST) in serum. Isoproterenol significantly reduced superoxide dismutase (SOD) and catalase (CAT) activity and increased vascular reactivity to various catecholamines. Pretreatment with myricetin (100 mg/kg, p.o. and 300 mg/kg, p.o.) for a period of 21 days significantly inhibited the effects of ISO on heart rate, levels of LDH, CK, AST, SOD, CAT, vascular reactivity changes and ECG patterns. Treatment with myricetin (100 mg/kg and 300 mg/kg) alone did not alter any of the parameters compared with vehicle treated Wistar rats. Myricetin treated animals showed a lesser degree of cellular infiltration in histopathological studies. Thus, myricetin (100 mg/kg and 300 mg/kg) ameliorates the cardiotoxic effects of isoproterenol and may be of value in the treatment of MI. Copyright © 2009 John Wiley & Sons, Ltd. [source] Aqueous garlic extract attenuates hepatitis and oxidative stress induced by galactosamine/lipoploysaccharide in ratsPHYTOTHERAPY RESEARCH, Issue 10 2008Hesham A. El-Beshbishy Abstract Injection of D-galactosamine and lipopolysaccharide (DGaIN/LPS) is useful as an experimental model of acute hepatic damage. Juvenile rats were used for investigation. The hepatoprotective activity of aqueous garlic (Allium sativum) extract (AGE) at a dose of 300 mg/kg body weight for 14 days, intraperitoneal (i.p.) prior to the induction of DGalN/LPS, was investigated against DGalN/LPS-induced hepatitis in rats. DGalN/LPS (300 mg/kg body weight/30 µg/kg body weight, i.p.), induced hepatic damage that was manifested by a significant increase in the activities of marker enzymes [alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma glutamyl transferase (,GT)], bilirubin, lipid peroxides (LPO), tumor necrosis factor (TNF- ,) and myeloperoxidase (MPO) activity level in serum. Also, the lipid profile in serum and liver homogenate including total cholesterol, triglycerides, free fatty acids and phospholipids were significantly deteriorated. The antioxidant enzyme activities (superoxide dismutase, SOD; reduced glutathione, GSH; catalase, CAT and glutathione peroxidase, GPX) in liver homogenate were significantly decreased in the DGalN/LPS. Pretreatment of rats with AGE reversed these altered parameters near to normal control values. Results of this study revealed that AGE could afford a significant protection in the alleviation of DGalN/LPS-induced hepatic damage. Copyright © 2008 John Wiley & Sons, Ltd. [source] The protein fraction of Phyllanthus niruri plays a protective role against acetaminophen induced hepatic disorder via its antioxidant propertiesPHYTOTHERAPY RESEARCH, Issue 7 2006Rajesh Bhattacharjee Abstract The aim of this study was to investigate the hepatoprotective action of the protein fraction of Phyllanthus niruri against acetaminophen (APAP) hepatotoxicity. The partially purified protein fraction of P. niruri was injected intraperitoneally in mice either prior to (preventive) or after the induction of toxicity (curative). Levels of different liver marker enzymes in serum and different antioxidant enzymes, as well as lipid peroxidation in total liver homogenates were measured in normal, control (toxicity induced) and P. niruri protein fraction-treated mice. P. niruri significantly reduced the elevated glutamate pyruvate transaminase (GPT) and alkaline phosphatase (ALP) levels in the sera of toxicity induced mice, compared with the control group. Lipid peroxidation levels were also reduced in mice treated with P. niruri protein fraction compared with the APAP treated control group. Among the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione,S-transferase (GST) levels were restored to almost normal levels compared with the control group. P. niruri treatment also enhanced reduced hepatic glutathione (GSH) levels caused by APAP administration. The results demonstrated that the protein fraction of P. niruri protected liver tissues against oxidative stress in mice, probably acting by increasing antioxidative defense. Copyright © 2006 John Wiley & Sons, Ltd. [source] Chemomodulatory effects of Azadirachta indica on the hepatic status of skin tumor bearing micePHYTOTHERAPY RESEARCH, Issue 3 2006Ashwani Koul Abstract The liver plays an important role in the modulation of the process of carcinogenesis, as it is the primary site for the biotransformation of xenobiotics including carcinogens as well as anticancer drugs. The present study was designed to evaluate the biochemical alterations occurring in the liver of 7,12-dimethylbenz(a)anthracene (DMBA) induced skin tumor bearing male Balb/c mice and their modulation by aqueous Azadirachta indica leaf extract (AAILE). It was observed that skin tumor induction caused hepatic damage characterized by a decreased hepatosomatic index and significantly increased (p < 0.001) activities of the hepatic tissue injury marker enzymes, namely alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase. However, upon treatment with AAILE, the above-mentioned alterations, including the increased activities of hepatic tissue injury marker enzymes, were significantly reversed, which signified the hepato-protective efficacy of Azadirachta indica. Increased oxidative stress was also observed in the hepatic tissue of skin tumor bearing mice as revealed by a significant increase (p < 0.001) in lipid peroxidation levels and a decrease in reduced glutathione contents and activities of various antioxidant enzymes studied, namely glutathione-S-transferase, glutathione peroxidase and glutathione reductase. The AAILE treatment reduced oxidative stress by decreasing lipid peroxidation levels and enhancing the reduced glutathione contents and activities of various antioxidant enzymes. The activities of the xenobiotic biotransformation enzymes, namely cytochrome P450, cytochrome b5 and glutathione-S-transferase, were found to be decreased in the hepatic tissue of tumor bearing mice. Treatment with AAILE further caused a decrease in the activity of cytochrome P450 and cytochrome b5, whereas it up-regulated the activity of glutathione-S-transferase. The significance of these observations with respect to the progress of the process of carcinogenesis is explained in the present research article. Copyright © 2006 John Wiley & Sons, Ltd. [source] Differential Inhibitory Effects of the Polyphenol Ellagic Acid on Inflammatory Mediators NF-,B, iNOS, COX-2, TNF-,, and IL-6 in 1,2-Dimethylhydrazine-Induced Rat Colon CarcinogenesisBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 2 2010Syed Umesalma We investigated the effect of ellagic acid on colon cancer induced by 1,2-dimethylhydrazine in rats. Male Wistar albino rats were divided into four groups. Group 1 served as control, group 2 rats received ellagic acid 60 mg/kg bodyweight/every day p.o. throughout the experiment. Rats from groups 3 and 4 were given subcutaneous (s.c.) injections of 1,2-dimethylhydrazine (20 mg/kg body weight) once a week for the first 15 weeks; rats in group 4 received ellagic acid as in group 2 after the last injection of 1,2-dimethylhydrazine and continued till the end of the experimental period of 30 weeks. 1,2-dimethylhydrazine-induced rats exhibited alterations in cancer tumour markers [5,-nucleotidase (5,-ND), gamma glutamyl transpeptidase (,-GT), carcinoembryonic antigen (CEA), alphafetoprotein (AFP) and cathepsin-D (CD)]; pathophysiological markers [alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)] and oral administration of ellagic acid restored the levels of these marker enzymes. Nuclear factor-kappa B (NF-,B) actively involved in the regulation of both pro-inflammatory proteins [inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)] and pro-inflammatory cytokines [tumour necrosis factor (TNF)-, and interleukin (IL)-6] and in our study 1,2-dimethylhydrazine-induced group exhibited elevated expressions of all these inflammatory proteins. Ellagic acid administration reduced the expressions of NF-,B, COX-2, iNOS, TNF-, and IL-6 as confirmed by immunohistochemical, immunoblot and immunofluorescence analysis during 1,2-dimethylhydrazine-induced colon carcinogenesis. In conclusion, ellagic acid demonstrates anti-inflammatory property by iNOS, COX-2, TNF-, and IL-6 down-regulation due to inhibition of NF-,B and exerts its chemopreventive effect on colon carcinogenesis. [source] Effects of Embelin on Lipid Peroxidation and Free Radical Scavenging Activity against Liver Damage in RatsBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2009Dharmendra Singh Carbon tetrachloride (CCl4) treatment to rats has been more susceptible to peroxidative damage through production of reactive metabolites, namely trichloromethyl-free radicals (CCl?3 and/or CCl3OO?) as measured by thiobarbituric acid reactive species. After the induction of liver damage by CCl4 intoxication to rats, the concentration of lipid peroxidation was significantly (P , 0.001) higher in liver and serum, along with concomitant decrease in the levels of antioxidants and cytochrome P450 enzyme in liver as compared to vehicle controls. The activities of marker enzymes , transaminases (AST, ALT), alkaline phosphatase (ALP), ,-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH) , along with the total bilirubin and total protein levels were altered significantly (P , 0.001) in the serum of CCl4 -treated rats. When these rats received embelin orally (25 mg/kg) from day 1 to day 15, peroxidative damage was minimal in both liver and serum along with effectively inducing the antioxidant potential in CCl4 -treated rats. The biochemical results were compared with the standard drug silymarin , a combination of flavonolignans of Silybum marianum and histology of liver sections. In conclusion, this study suggests that embelin acts as a natural antioxidant against hepatotoxicity induced in rats. [source] |