Marker Alleles (marker + allele)

Distribution by Scientific Domains


Selected Abstracts


Generation and characterization of a novel neural crest marker allele, Inka1-LacZ, reveals a role for Inka1 in mouse neural tube closure

DEVELOPMENTAL DYNAMICS, Issue 4 2010
Bethany S. Reid
Abstract Previous studies identified Inka1 as a gene regulated by AP-2, in the neural crest required for craniofacial morphogenesis in fish and frog. Here, we extend the analysis of Inka1 function and regulation to the mouse by generating a LacZ knock-in allele. Inka1-LacZ allele expression occurs in the cephalic mesenchyme, heart, and paraxial mesoderm prior to E8.5. Subsequently, expression is observed in the migratory neural crest cells and their derivatives. Consistent with expression of Inka1 in tissues of the developing head during neurulation, a low percentage of Inka1,/, mice show exencephaly while the remainder are viable and fertile. Further studies indicate that AP-2, is not required for Inka1 expression in the mouse, and suggest that there is no significant genetic interaction between these two factors during embryogenesis. Together, these data demonstrate that while the expression domain of Inka1 is conserved among vertebrates, its function and regulation are not. Developmental Dynamics 239:1188,1196, 2010. © 2010 Wiley-Liss, Inc. [source]


The spread of apomixis and its effect on resident genetic variation

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2007
S. ADOLFSSON
Abstract In a simulation model we investigated how much of the initial genetic variation that is retained in a population after a dominant mutation has brought apomixis to fixation in it. A marker allele associated with the apomixis mutation is generally retained after the fixation of apomixis, particularly if the two alleles are closely linked. The spread of asexuality, however, normally leads to almost no loss of genetic variation, neither with respect to cytotypes nor with respect to genotypes. This holds for large populations and apomixis mutants with strong pollen production. In smaller populations, and with apomicts with reduced pollen production, the outcome is more variable, ranging from no genetic variation retained to only weakly reduced variability compared with the initial state. These results help explain the high genetic variability in many apomicts. They also imply that natural selection will have many genotypes to act on even after the spread of apomixis. [source]


Power of Linkage Disequilibrium Mapping to Detect a Quantitative Trait Locus (QTL) in Selected Samples of Unrelated Individuals

ANNALS OF HUMAN GENETICS, Issue 6 2003
A. Tenesa
Summary We considered a strategy to map quantitative trait loci (QTLs) using linkage disequilibrium (LD) when the QTL and marker locus were multiallelic. The strategy involved phenotyping a large number of unrelated individuals and genotyping only selected individuals from the two tails of the trait distribution. Power to detect trait-marker association was assessed as a function of the number of QTL and marker alleles. Two patterns of LD were used to study their influence on power. When the frequency of the QTL allele with the largest effect and that of the marker allele linked in coupling were equal, power was maximum. In this case, increasing the number of QTL alleles reduced the power. The maximum difference in power between the two LD patterns studied was ,30%. For low QTL heritabilities (h2QTL < 0.1) and single trait studies we recommend selecting around 5% of the upper and lower tails of the trait distribution. [source]


Cosegregation of a Factor VIII Microsatellite Marker with Mild Hemophilia A in Golden Retriever Dogs

JOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 2 2005
Marjory B. Brooks
Mild hemophilia A (factor VIII deficiency) was diagnosed in Golden Retrievers and pedigree studies were undertaken to test the cosegregation of an intragenic factor VIII marker with the disease phenotype. The study population consisted of 30 client-owned dogs (22 males and 8 females). Hemophilic males (n = 12) typically demonstrated prolonged bleeding after trauma or surgery rather than spontaneous hemorrhagic events. The affected males had a proportionate reduction in factor VIII coagulant activity (mean FVIII:C = 4%) and factor VIII protein concentration (mean FVIII:Ag = 3%). Twenty-five dogs (10 affected males, 8 clear males, 2 obligate carrier dams, and 5 suspect carrier daughters) were genotyped for a factor VIII microsatellite marker, with allele size assigned by an automated capillary electrophoresis system. Five distinct marker alleles were present in the study pedigree and a 300-base pair allele was found to segregate with the hemophilia A phenotype. The inheritance of the hemophilia-associated allele defined carrier status for 5 suspect daughters of obligate carrier dams. The limitations inherent to linkage analyses (ie, lack of access to key family members and homozygosity at the marker locus) did not preclude carrier detection in this pedigree. We conclude that genotype analysis for the intragenic factor VIII marker can aid in control of canine hemophilia A through enhanced carrier detection. [source]


Experimental population design for estimation of dominant molecular marker effect on egg-production traits

ANIMAL GENETICS, Issue 5 2003
M. G. Kaiser
Summary A potential limitation of the use of a dominant molecular marker system such as DNA fingerprinting (DFP) is the inability to distinguish homozygous from heterozygous allele state in an individual, and a resulting inaccuracy in estimating effects of the marker alleles. The objective of this study was to accurately estimate the effect of DFP markers on egg-production traits. A BC1 population was produced from two distinct layer lines. Four DFP bands, each originating predominantly in one of the two parental lines, were evaluated for linkage with egg-production quantitative trait loci in the BC1 population. The egg-production traits consisted of eight early period and seven late period measurements. Eight marker-trait linkages were identified out of 60 total statistical tests. By utilizing information on frequency of DFP bands in two parental lines, selecting F1 sires with DFP bands present, and backcrossing to the line lacking these bands, the population design allowed definitive identification of the DFP zygosity in the BC1 resource population hens. In this manner, accurate estimates of marker allele effects on egg-production traits were obtained from the dominant marker system of DNA fingerprinting. [source]


FMR1 CGG Repeat Patterns and Flanking Haplotypes in Three Asian Populations and Their Relationship With Repeat Instability

ANNALS OF HUMAN GENETICS, Issue 6 2006
Youyou Zhou
Summary Hyper-expansion of a CGG repeat in the 5, untranslated region of the FMR1 gene followed by methylation and silencing is the predominant cause of Fragile X syndrome, the most common inherited mental retardation disorder. Most detailed studies of the FMR1 gene have focused on Caucasian populations and patients. We performed a detailed haplotype and linkage disequilibrium analysis of the FMR1 gene in a total of 454 unselected normal X chromosomes from three Asian populations, Chinese, Malay and Indian. Compared to Caucasians and African Americans, the diversity of normal FMR1 CGG repeat lengths, patterns and flanking haplotypes were lower in Asians. Strong linkage disequilibrium was observed between the CGG repeat and flanking FMR1 markers in all three Asian populations, with strong association between specific CGG repeat alleles and flanking marker alleles observed only in the Chinese and Malays. A test for randomness of distribution between FRAXA CGG repeat patterns and flanking FMR1 marker haplotypes also revealed a highly significant non-random distribution between CGG repeat patterns and flanking haplotypes in all three ethnic groups (P < 0.001). Extending previous findings in Caucasians and African Americans we present a novel statistical approach, using data from unselected population samples alone, to show an association between absence of at least one AGG interruption in any position (5,, 3,, or middle) and increased CGG repeat instability. [source]


Power of Linkage Disequilibrium Mapping to Detect a Quantitative Trait Locus (QTL) in Selected Samples of Unrelated Individuals

ANNALS OF HUMAN GENETICS, Issue 6 2003
A. Tenesa
Summary We considered a strategy to map quantitative trait loci (QTLs) using linkage disequilibrium (LD) when the QTL and marker locus were multiallelic. The strategy involved phenotyping a large number of unrelated individuals and genotyping only selected individuals from the two tails of the trait distribution. Power to detect trait-marker association was assessed as a function of the number of QTL and marker alleles. Two patterns of LD were used to study their influence on power. When the frequency of the QTL allele with the largest effect and that of the marker allele linked in coupling were equal, power was maximum. In this case, increasing the number of QTL alleles reduced the power. The maximum difference in power between the two LD patterns studied was ,30%. For low QTL heritabilities (h2QTL < 0.1) and single trait studies we recommend selecting around 5% of the upper and lower tails of the trait distribution. [source]


A Likelihood-Based Trait-Model-Free Approach for Linkage Detection of Binary Trait

BIOMETRICS, Issue 1 2010
S. Basu
Summary Trait-model-free (or "allele-sharing") approach to linkage analysis is a popular tool in genetic mapping of complex traits, because of the absence of explicit assumptions about the underlying mode of inheritance of the trait. The likelihood framework introduced by Kong and Cox (1997,,American Journal of Human Genetics,61, 1179,1188) allows calculation of accurate p-values and LOD scores to test for linkage between a genomic region and a trait. Their method relies on the specification of a model for the trait-dependent segregation of marker alleles at a genomic region linked to the trait. Here we propose a new such model that is motivated by the desire to extract as much information as possible from extended pedigrees containing data from individuals related over several generations. However, our model is also applicable to smaller pedigrees, and has some attractive features compared with existing models (Kong and Cox, 1997), including the fact that it incorporates information on both affected and unaffected individuals. We illustrate the proposed model on simulated and real data, and compare its performance with the existing approach (Kong and Cox, 1997). The proposed approach is implemented in the program lm_ibdtests within the framework of MORGAN 2.8 (http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml). [source]


Quantifying Genomic Imprinting in the Presence of Linkage

BIOMETRICS, Issue 4 2006
Quentin Vincent
Summary Genomic imprinting decreases the power of classical linkage analysis, in which paternal and maternal transmissions of marker alleles are equally weighted. Several methods have been proposed for taking genomic imprinting into account in the model-free linkage analysis of binary traits. However, none of these methods are suitable for the formal identification and quantification of genomic imprinting in the presence of linkage. In addition, the available methods are designed for use with pure sib-pairs, requiring artificial decomposition in cases of larger sibships, leading to a loss of power. We propose here the maximum likelihood binomial method adaptive for imprinting (MLB-I), which is a unified analytic framework giving rise to specific tests in sibships of any size for (i) linkage adaptive to imprinting, (ii) genomic imprinting in the presence of linkage, and (iii) partial versus complete genomic imprinting. In addition, we propose an original measure for quantifying genomic imprinting. We have derived and validated the distribution of the three tests under their respective null hypotheses for various genetic models, and have assessed the power of these tests in simulations. This method can readily be applied to genome-wide scanning, as illustrated here for leprosy sibships. Our approach provides a novel tool for dissecting genomic imprinting in model-free linkage analysis, and will be of considerable value for identifying and evaluating the contribution of imprinted genes to complex diseases. [source]