Maritime Alps (maritime + alp)

Distribution by Scientific Domains


Selected Abstracts


Morphometric Analysis on the Size, Shape and Areal Distribution of Glacial Cirques in the Maritime Alps (Western French-Italian Alps)

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2004
Paolo Roberto Federici
Abstract The morphometry of 432 glacial cirques in the Maritime Alps (Western French-Italian Alps), studied over several years of fieldwork, was analysed with the use of a geographical information system. Some of the parameters automatically evaluated from digital elevation models required an objective and relatively new definition. In particular, cirque length was measured along a line that, from the threshold midpoint, splits the cirque into two equivalent surfaces; cirque width was automatically drawn as the longest line inscribed in the cirque and perpendicular to the length line. Significant correlations were found among the different factors and parameters analysed. In particular, cirque shape analysis showed that cirques develop allometrically in the three dimensions, i.e. more in length and width than in altitudinal range. Nevertheless cirques of the Maritime Alps have a regular, almost circular shape (mean L/W value = 1.07). The correlations among length, width and area are all very high (r2= 0.8,0.9). In terms of size, cirques show a wide range in area from 0.06 to 5.2 km2 with a mean value of 0.4 km2. The largest cirques are found on SSW-facing slopes and at high elevations. Small cirques can be found at all altitudes but all those at high elevation are part of compound cirques at the main head valleys. Most cirques (37%) are characterized by a northern aspect; NE and SW are also frequent directions. [source]


Contrasting phylogeographies inferred for the two alpine sister species Cardamine resedifolia and C. alpina (Brassicaceae)

JOURNAL OF BIOGEOGRAPHY, Issue 1 2009
Judita Lihová
Abstract Aim, We use Cardamine alpina and C. resedifolia as models to address the detailed history of disjunctions in the European alpine system. These species grow on siliceous bedrock: C. alpina in the Alps and Pyrenees, and C. resedifolia in several mountain ranges from the Sierra Nevada to the Balkans. We explore differentiation among their disjunct populations as well as within the contiguous Alpine and Pyrenean ranges, and compare the phylogeographical histories of these diploid sister species. We also include samples of the closely related, arctic diploid C. bellidifolia in order to explore its origin and post-glacial establishment. Location, European alpine system, Norway and Iceland. Methods, We employed amplified fragment length polymorphisms (AFLPs). AFLP data were analysed using principal coordinates analysis, neighbour joining and Bayesian clustering, and measures of diversity and differentiation were computed. Results, For the snow-bed species C. alpina (27 populations, 203 plants) we resolved two strongly divergent lineages, corresponding to the Alps and the Pyrenees. Although multiple glacial refugia were invoked in the Pyrenees, we inferred only a single one in the Maritime Alps , from which rapid post-glacial colonization of the entire Alps occurred, accompanied by a strong founder effect. For C. resedifolia (33 populations, 247 plants), which has a broader ecological amplitude and a wider distribution, the genetic structuring was rather weak and did not correspond to the main geographical disjunctions. This species consists of two widespread and largely sympatric main genetic groups (one of them subdivided into four geographically more restricted groups), and frequent secondary contacts exist between them. Main conclusions, The conspicuously different histories of these two sister species are likely to be associated with their different ecologies. The more abundant habitats available for C. resedifolia may have increased the probability of its gradual migration during colder periods and also of successful establishment after long-distance dispersal, whereas C. alpina has been restricted by its dependence on snow-beds. Surprisingly, the arctic C. bellidifolia formed a very divergent lineage with little variation, contradicting a scenario of recent, post-glacial migration from the Alps or Pyrenees. [source]


Pollen-inferred palaeoclimate reconstructions in mountain areas: problems and perspectives,

JOURNAL OF QUATERNARY SCIENCE, Issue 6 2006
Elena Ortu
Abstract Transfer functions are an efficient tool for the quantitative reconstruction of past climate from low to mid-elevation pollen sites. However, the application of existing methods to high-altitude pollen assemblages frequently leads to unrealistic results. In the aim of understanding the causes of these biases, the standard ,best modern analogue' method has been applied to two high-altitude pollen sequences to provide quantitative climate estimates for the Lateglacial and Holocene periods. Both pollen sequences (Laghi dell'Orgials, 2130,m, SW aspect and Lago delle Fate, 2240,m, E aspect) are located in the subalpine belt, on opposing sides of the St. Anna di Vinadio Valley (Italian Maritime Alps). Different results were obtained from the two sequences. The largest differences occurred in palaeotemperature reconstruction, with notable differences in both the values and trends at each site. These biases may be attributed to: (1) a lack of high elevation ,best modern analogues' in the database of modern samples; (2) the problem of pollen taxa that have multiple climatic significance; (3) problems related to the complexity of mountainous ecosystems, such as the phenomenon of uphill transport of tree pollen by wind. Possible improvements to the reconstruction process are discussed. Copyright © 2006 John Wiley & Sons, Ltd. [source]