Marine Organisms (marine + organism)

Distribution by Scientific Domains


Selected Abstracts


Distribution and fate of biologically formed organoarsenicals in coastal marine sediment

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 8 2005
Mio Takeuchi
Abstract Marine organisms, including phyto- and zoo-plankton, macroalgae, and animals, concentrate arsenic in various organic forms. However, the distribution and fate of these organoarsenicals in marine environments remains unclear. In this study, the distribution of organoarsenicals in coastal marine sediment in Otsuchi Bay, Japan, has been determined. Methylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, arsenocholine and other unidentified arsenic species were detected in marine sediment by high-performance liquid chromatography,inductively coupled plasma mass spectrometry analysis of methanol,water extracts. Arsenobetaine was the dominant organoarsenical at four of the seven stations where tests were carried out, and unidentified species or dimethylarsinic acid dominated at the other stations. Total organoarsenicals (as arsenic) in the surface sediment amounted to 10.6,47.5 µg kg,1 dry sediment. Core analysis revealed that concentrations of organoarsenicals decreased with depth, and they are considered to be degraded within 60 years of deposition. These results show that organoarsenicals formed by marine organisms are delivered to the sediment and can be degraded within several decades. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Application of HPLC-NMR for the Rapid Chemical Profiling of a Southern Australian Sponge, Dactylospongia sp.

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 4 2009
Daniel Anthony Dias
Abstract Rapid chemical profiling of the antitumour active crude dichloromethane extract of the marine sponge, Dactylospongia sp. was undertaken. A combination of both offline (HPLC followed by NMR and MS) and on-line (on-flow and stop-flow HPLC-NMR) chemical profiling approaches was adopted to establish the exact nature of the major constituents present in the dichloromethane extract of this sponge. On-flow HPLC-NMR analysis was employed to initially identify components present in the dichloromethane extract, while stop-flow HPLC-NMR experiments were then conducted on the major component present, resulting in the partial identification of pentaprenylated p -quinol (5). Subsequent off-line RP semi-preparative HPLC isolation of 5 followed by detailed spectroscopic analysis using NMR and MS permitted the complete structure to be established. This included the first complete carbon NMR chemical shift assignment of 5 based on the heteronuclear 2-D NMR experiments, together with the first report of its antitumour activity. This study represents one of the few reports describing the application of HPLC-NMR to chemically profile secondary metabolites from a marine organism. [source]


Simultaneous fixation using glutaraldehyde and osmium tetroxide or potassium ferricyanide-reduced osmium for the preservation of monogenean flatworms: An assessment for Merizocotyle icopae

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 2 2004
Bronwen Cribb
Abstract Simultaneous fixation was investigated for a marine organism: the monogenean flatworm ectoparasite Merizocotyle icopae. Four protocols for primary fixation were compared: 3% glutaraldehyde alone in 0.1M cacodylate buffer for a minimum of 2 hours; 1% glutaraldehyde in combination with 1% osmium tetroxide, both in 0.1M cacodylate buffer, until tissues darkened (5,20 minutes); 1% glutaraldehyde in 0.1M cacodylate buffer in combination with 0.5% potassium ferricyanide-reduced osmium until tissues darkened (5,20 minutes); 1% glutaraldehyde in combination with 1% osmium tetroxide, both in 0.1M cacodylate buffer, for 30 minutes. The study confirms that the standard method for transmission electron microscopic fixation (first listed protocol) routinely applied to platyhelminths is optimal for ultrastructural preservation, but some simultaneous fixation methods (second and third listed protocols) are acceptable when rapid immobilization is needed. Scanning electron microscopic preparations may be improved using simultaneous primary fixation. Microsc. Res. Tech. 63:102,110, 2004. © 2004 Wiley-Liss, Inc. [source]


Cytotoxic effects induced by hexachlorobenzene in Squilla mantis (L.) (Crustacea, Stomatopoda)

ENVIRONMENTAL TOXICOLOGY, Issue 1 2008
Antonio Dell'Anno
Abstract Contamination of marine environments by hexachlorobenzene (HCB) represents a serious concern for potential consequences on ecosystem and human health. Despite this, information on cytotoxic effects on marine organisms is still largely lacking. In this study, we investigated cytotoxic effects induced by HCB on gonads and muscular tissue of Squilla mantis by analysing Na+/K+ -ATPase activity and plasma membrane fluidity. This crustacean species was selected as a model for its habitat, trophic level, feeding behavior, and commercial exploitation for human consumption. Time course experiments revealed that low concentrations of HCB (i.e. 50 nM) determine an exponentially decrease of Na+/K+ -ATPase activity and a significant modification of cellular membrane fluidity. Significant negative relationships between Na+/K+ -ATPase activity and membrane fluidity were observed, suggesting that changes in the structure and packing of cellular membranes induced by HCB may be the primary factor affecting the activity of essential bilayer-associated enzymes. Overall these findings suggest that even small concentrations of HCB may determine important changes on cell metabolism with potential cascade effects on recruitment of this commercial species. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2008. [source]


Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: Bioavailability, biodegradability, and toxicity issues

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2003
Henry H. Tabak
Abstract The widespread contamination by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes. This research studied a chronically PAH-contaminated estuarine sediment from the East River (ER; NY, USA) characterized by high concentrations of PAHs (,4,190 ppm), sulfide, and metals and a marine sediment from New York/New Jersey Harbor (NY/NJH; USA) with only trace quantities of PAHs (0.1,0.6 ppm). The focus was to examine the relationship between bioavailability of PAHs and their biological removal in a slurry system. Freshwater and marine sediment toxicity tests were conducted to measure baseline toxicity of both sediments to amphipods, aquatic worms, fathead and sheepshead minnow larvae, and a vascular plant; to determine the cause of toxicity; and to evaluate the effectiveness of the biotreatment strategies in reducing toxicity. Results showed the ER sediment was acutely toxic to all freshwater and marine organisms tested and that the toxicity was mainly caused by sulfide, PAHs, and metals present in the sediment. In spite of the high toxicity, most of the PAH compounds showed significant degradation in the aerobic sediment/water slurry system if the initial high oxygen demand due to the high sulfide content of the sediment was overcome. The removal of PAHs by biodegradation was closely related to their desorbed amount in 90% isopropanol solution during 24 h of contact, while the desorption of model PAH compounds from freshly spiked NY/NJH sediment did not describe the bioavailability of PAHs in the East River sediment well. The research improves our understanding of bioavailability as a controlling factor in bioremediation of PAHs and the potential of aerobic biodegradation for PAH removal and ecotoxicity reduction. [source]


Acute and chronic toxicity of nickel to marine organisms: Implications for water quality criteria

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2002
John W. Hunt
Abstract Acute and chronic toxicity tests were conducted to determine the effects of nickel on three U.S. west coast marine species: a fish (the topsmelt, Atherinops affinis), a mollusk (the red abalone, Haliotis rufescens), and a crustacean (the mysid, Mysidopsis intii). The 96-h median lethal concentration (LC50) for topsmelt was 26,560 mg/L, and the chronic value for the most sensitive endpoint in a 40-d exposure was 4,270 mg/L. The median effective concentration (EC50) for 48-h abalone larval development was 145.5 ,g/L, and the chronic value for juvenile growth in a 22-d exposure through larval metamorphosis was 26.43 mg/L. The mysid 96-h LC50 was 148.6 ,g/L, and the chronic value for the most sensitive endpoint in a 28-d, whole life-cycle exposure was 22.09 ,g/L. The abalone and mysid acute values were lower than other values available in the literature. Acute-tochronic ratios for nickel toxicity to the three species were 6.220, 5.505, and 6.727, respectively, which were similar to the only other available saltwater value of 5.478 (for Americamysis [Mysidopsis] bahia) and significantly lower than the existing values of 35.58 and 29.86 for freshwater organisms. Incorporation of data from the present study into calculations for water quality criteria would lower the criterion maximum concentration and raise the criterion continuous concentration for nickel. [source]


Toxicity of tributyltin and triphenyltin to early life-stages of Paracentrotus lividus (Echinodermata: Echinoidea)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2002
Alessandra Arizzi Novelli
Abstract Sperm cell and embryo toxicity tests using the Mediterranean sea urchin Paracentrotus lividus were performed to assess the toxicity of tributyltin chloride, bis(tributyltin)oxide, triphenyltin acetate, and triphenyltin hydroxide. Toxicity values (mean effective concentration [EC50]) ranged from 2.97 to 18.5 ,g/L for sperm cells and from 1.11 to 2.62 ,g/L for embryos. For sperm cells, the toxicity of the two tributyl compounds was significantly greater than that of two triphenyl compounds; for embryos, the triphenyl compounds appeared to be more toxic. Study of embryotoxic effects highlighted closely concentration-dependent damages, the most sensitive stages corresponding to the crucial phases of differentiation (gastrula and prisma). Both EC50 and no-observed-effect concentration values for the four organotin compounds are similar to those reported in the literature for early life stages of other marine organisms. [source]


Extinction vulnerability in marine populations

FISH AND FISHERIES, Issue 1 2003
Nicholas K Dulvy
Abstract Human impacts on the world's oceans have been substantial, leading to concerns about the extinction of marine taxa. We have compiled 133 local, regional and global extinctions of marine populations. There is typically a 53-year lag between the last sighting of an organism and the reported date of the extinction at whatever scale this has occurred. Most disappearances (80%) were detected using indirect historical comparative methods, which suggests that marine extinctions may have been underestimated because of low-detection power. Exploitation caused most marine losses at various scales (55%), followed closely by habitat loss (37%), while the remainder were linked to invasive species, climate change, pollution and disease. Several perceptions concerning the vulnerability of marine organisms appear to be too general and insufficiently conservative. Marine species cannot be considered less vulnerable on the basis of biological attributes such as high fecundity or large-scale dispersal characteristics. For commercially exploited species, it is often argued that economic extinction of exploited populations will occur before biological extinction, but this is not the case for non-target species caught in multispecies fisheries or species with high commercial value, especially if this value increases as species become rare. The perceived high potential for recovery, high variability and low extinction vulnerability of fish populations have been invoked to avoid listing commercial species of fishes under international threat criteria. However, we need to learn more about recovery, which may be hampered by negative population growth at small population sizes (Allee effect or depensation) or ecosystem shifts, as well as about spatial dynamics and connectivity of subpopulations before we can truly understand the nature of responses to severe depletions. The evidence suggests that fish populations do not fluctuate more than those of mammals, birds and butterflies, and that fishes may exhibit vulnerability similar to mammals, birds and butterflies. There is an urgent need for improved methods of detecting marine extinctions at various spatial scales, and for predicting the vulnerability of species. [source]


A new approach to prioritizing marine fish and shellfish populations for conservation

FISH AND FISHERIES, Issue 4 2001
Einar Eg Nielsen
Abstract There has been increasing awareness of the vulnerability of marine organisms to population extirpation and species extinction. While very few documented cases of species extinction exist in the marine environment, it is anticipated that managers will face the dilemma of prioritizing populations of marine fish and shellfish for protection in the near future. Current prioritization procedures have been developed from salmonid models with the intent of applying them to all marine organisms, and in some cases to freshwater and terrestrial taxa. In this review we provide evidence for the relevance of such a process for marine species and further suggest five broad categories of marine organisms that have distinctive traits influencing their genetic structure. The current prioritization models have been adapted to account for each of these species groups. Emphasis is placed on ,Classical Marine Species' which represent the opposite end of the continuum from the salmon model, displaying high within-population genetic variance. From this category, three cod (Gadus morhua) stocks were selected to evaluate a revised scheme developed specifically for ,Classical Marine Species' that includes performance measures such as (i) reduction in number of spawning populations; (ii) reduction of Ne : Nc (ratio of effective to census population size); (iii) changes in life-history traits; (iv) critical density for spawning success; and (v) patchy vs. continuous distribution pattern. When the salmonid scheme was applied, the cod examples were allocated low values, indicating that they were not under threat. However, when the revised scheme was applied, all three cod stocks were allocated high values, indicating that the revised scheme was more reflective of the particular life-history traits of this category of organisms. [source]


Increasing ocean temperatures allow tropical fishes to survive overwinter in temperate waters

GLOBAL CHANGE BIOLOGY, Issue 2 2010
WILL F. FIGUEIRA
Abstract The southeast coast of Australia is a global hotspot for increasing ocean temperatures due to climate change. The temperate incursion of the East Australian Current (EAC) is increasing, affording increased connectivity with the Great Barrier Reef. The survival of tropically sourced juveniles over the winter is a significant stumbling block to poleward range shifts of marine organisms in this region. Here we examine the dependence of overwintering on winter severity and prewinter recruitment for eight species of juvenile coral reef fishes which are carried into temperate SE Australia (30,37 °S) by the EAC during the austral summer. The probability of persistence was most strongly influenced by average winter temperature and there was no effect of recruitment strength. Long-term (138 years) data indicate that winter water temperatures throughout this region are increasing at a rate above the global average and predictions indicate a further warming of >2 °C by the end of the century. Rising ocean temperatures are resulting in a higher frequency of winter temperatures above survival thresholds. Current warming trajectories predict 100% of winters will be survivable by at least five of the study species as far south as Sydney (34 °S) by 2080. The implications for range expansions of these and other species of coral reef fish are discussed. [source]


Synergistic effects associated with climate change and the development of rocky shore molluscs

GLOBAL CHANGE BIOLOGY, Issue 3 2005
R. Przeslawski
Abstract Global climate change and ozone layer thinning will simultaneously expose organisms to increasingly stressful conditions. Early life stages of marine organisms, particularly eggs and larvae, are considered most vulnerable to environmental extremes. Here, we exposed encapsulated embryos of three common rocky shore gastropods to simultaneous combinations of ecologically realistic levels of ultraviolet radiation (UVR), water temperature stress and salinity stress to identify potential interactions and associated impacts of climate change. We detected synergistic effects with increases in mortality and retardation in development associated with the most physiologically stressful conditions. The effects of UVR were particularly marked, with mortality increasing up to 12-fold under stressful conditions. Importantly, the complex outcomes observed on applying multiple stressors could not have been predicted from examining environmental variables in isolation. Hence, we are probably dramatically underestimating the ecological impacts of climate change by failing to consider the complex interplay of combinations of environmental variables with organisms. [source]


In-situ Corrosion Studies on Wrecked Aircraft of the Imperial Japanese Navy in Chuuk Lagoon, Federated States of Micronesia

INTERNATIONAL JOURNAL OF NAUTICAL ARCHAEOLOGY, Issue 1 2006
Ian D. MacLeod
A preliminary in-situ corrosion survey of the submerged Japanese WWII aircraft in Chuuk Lagoon, in the Federated States of Micronesia, has provided information on the way in which the wrecks interact with the marine environment. The aircraft are characterised by a lack of encrusting marine organisms and are clearly identifiable. The values of pH and the corrosion potentials vary with depth and the voltage depends on the composition of the underlying metal alloys. It is possible that with additional data from these non-destructive methods techniques it will be possible to provide marine archaeologists with appropriate diagnostic tools. © 2006 The Author. [source]


Fishing in Peru between 10,000 and 3750 BP

INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 1-2 2001
Elizabeth J. ReitzArticle first published online: 28 FEB 200
Abstract Archaeozoological data for the period of 10,000,5000 bp were rare for the southeastern Pacific coast, until recent work provided data from eight sites in Peru and Ecuador. These sites span the early to mid-Holocene period, during which time modern climatic conditions became established. Vertebrate faunal data from these sites provide an opportunity to explore the influence of mid-Holocene environmental changes on fishing in Peru during this time. With two exceptions, most faunal collections are dominated by marine animals, with virtually no terrestrial vertebrates. Many of the marine organisms are catholic species, tolerant of a wide variety of water conditions, rather than ones which clearly prefer warm,tropical or warm,temperate ones. Warm,tropical species are more common in the northern assemblages, as would be expected. There is a temporal pattern as well. Within three subdivisions of this area, warm,tropical animals diminish in abundance, and warm,temperate animals increase. These differences probably reflect cultural responses to mid-Holocene environmental change, in which coastal waters from southern Peru into Ecuador became cooler. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Fluorescent proteins for live cell imaging: Opportunities, limitations, and challenges

IUBMB LIFE, Issue 11 2009
Jörg Wiedenmann
Abstract The green fluorescent protein (GFP) from the jellyfish Aequorea victoria can be used as a genetically encoded fluorescence marker due to its autocatalytic formation of the chromophore. In recent years, numerous GFP-like proteins with emission colors ranging from cyan to red were discovered in marine organisms. Their diverse molecular properties enabled novel approaches in live cell imaging but also impose certain limitations on their applicability as markers. In this review, we give an overview of key structural and functional properties of fluorescent proteins that should be considered when selecting a marker protein for a particular application and also discuss challenges that lie ahead in the further optimization of the glowing probes. © 2009 IUBMB IUBMB Life, 61(11): 1029,1042, 2009 [source]


Absence of post-Miocene Red Sea land bridges: biogeographic implications

JOURNAL OF BIOGEOGRAPHY, Issue 6 2006
Carlos A. Fernandes
Abstract In a large number of studies concerned with species movements between Africa and Eurasia, including the migrations of hominids out of Africa, a frequently-cited dispersal route is across a hypothetical land bridge in the southern Red Sea, which is suggested to have emerged during glacial sea-level lowstands. This paper, however, unequivocally demonstrates that palaeoceanographic and palaeoecological data are incompatible with the existence of Red Sea land bridges since the Miocene. The case is made by presenting the first quantitative history of water depth above the Red Sea sill for the last 470,000 years, a time period that includes the four most recent glacial,interglacial cycles, and by discussing the predictable consequences of any land bridge formation on the Red Sea sedimentary and microfossil records. The absence of post-Miocene Red Sea land bridges has extensive implications for biogeographic models in the Afro-Arabian region. Genetic, morphometric and palaeontological patterns reported in the literature cannot be related to dispersals over a land bridge, or in the case of marine organisms, separation of the Red Sea from the Indian Ocean by a land bridge. If such patterns in terrestrial species are only congruent with a southern Red Sea dispersal route, then they need to be considered in terms of sweepstake rafting, anthropogenic introduction, or in the particular case of the Out-of-Africa migration by modern humans, seafaring. The constraints imposed by our palaeoenvironmental record on biogeographic reconstructions within and around the Red Sea will hopefully encourage both the review of previous works and the preference for multidisciplinary approaches in future studies. [source]


The tripartite biogeographical index: a new tool for quantifying spatio-temporal differences in distribution patterns

JOURNAL OF BIOGEOGRAPHY, Issue 4 2006
Tom Schils
Abstract Aims, First, to develop an index that quantifies biogeographical patterns based on the basic descriptors of presence/absence distribution patterns (F, frequency; C, connectivity; G, grouping). Second, to test the proposed biogeographical index on a data set of macrophyte communities in the Arabian Sea using distribution data of macro-algae and seagrasses throughout the Indian Ocean. Location, Arabian Sea (regional macrophyte community data) and the larger Indian Ocean (oceanic distribution data). Methods, The proposed index is derived from the Tulloss tripartite similarity index. The tripartite biogeographical index (TBI = ,F × C × G) is calculated for a specific taxon and incorporates several fundamental parameters of presence/absence data in grid cell (block) patterns. TBI accounts for the relative abundance of a taxon, the average grouping of its occurrences, the average of minimal absence intervals between taxon presences and the largest coherent cluster of taxon occurrences, and also incorporates dispersal aspects. The macrophytes from the case study are among the best documented marine organisms in the Indian Ocean. The regional distribution data from the Arabian Sea result from exhaustive species lists from Masirah Island (Oman) and the Socotra Archipelago (Yemen). Results, TBI values fit a linear scale corresponding to the proportional presence and the distributional spread of taxa within a given geographical area. The three functions that constitute TBI can be evaluated separately or in association with TBI, to give detailed information on the important factors that characterize the biogeographical distribution of a taxon (or larger entities consisting of multiple taxa such as communities). The case study on Arabian macrophytes clarifies the use and explanatory power of the index. Main conclusions, The biogeographical descriptors can be combined into an index which accurately quantifies taxon occurrences and distribution types on a single linear scale from rare/scattered to abundant/grouped. Together with its three functions, the index allows for a non-arbitrary selection of taxa and taxon groupings based on their distribution pattern. The analysis of TBI values for the Arabian macrophyte communities confirms previous biogeographical findings and enables more detailed statistical analyses of the distribution data. [source]


Aquabirnaviruses isolated from marine organisms form a distinct genogroup from other aquabirnaviruses

JOURNAL OF FISH DISEASES, Issue 11 2004
C X Zhang
Abstract A phylogenetic tree of aquabirnaviruses, including marine birnaviruses (MABV) and infectious pancreatic necrosis virus (IPNV), was developed based on the nucleotide sequences and deduced amino acid sequences of the polyprotein and VP5 genes of genomic segment A. In the polyprotein of MABV strains, the amino acid sequences were very similar, with identities of 98.3,99.7%. Twenty-one unique amino acid residues were found in the deduced amino acid sequences of the polyprotein gene of MABV strains. The phylogenetic tree based on the nucleotide sequence of genomic segment A and polyprotein sequences showed that 31 aquabirnavirus strains were clustered into seven genogroups. All MABV strains isolated in Japan and Korea were clustered into one genogroup which was distinct from other aquabirnaviruses. The seventh genogroup containing all MABV strains showed amino acid sequence similarities of 80.7,90.6% with other genogroups. In VP5, four unique residues were found in MABV strains when compared with IPNV strains. The MABV strains exhibited amino acid sequence similarities of 63.9,86.4% with IPNV strains. The amino acid sequences of VP5 were conserved among MABV strains, but differed from those of IPNV strains. The MABV strains isolated from different host species and different geographical areas were very similar to each other, suggesting that the MABV are distinct from the other genogroups. [source]


Bipolar gene flow in deep-sea benthic foraminifera

MOLECULAR ECOLOGY, Issue 19 2007
J. PAWLOWSKI
Abstract Despite its often featureless appearance, the deep-ocean floor includes some of the most diverse habitats on Earth. However, the accurate assessment of global deep-sea diversity is impeded by a paucity of data on the geographical ranges of bottom-dwelling species, particularly at the genetic level. Here, we present molecular evidence for exceptionally wide distribution of benthic foraminifera, which constitute the major part of deep-sea meiofauna. Our analyses of nuclear ribosomal RNA genes revealed high genetic similarity between Arctic and Antarctic populations of three common deep-sea foraminiferal species (Epistominella exigua, Cibicides wuellerstorfi and Oridorsalis umbonatus), separated by distances of up to 17 000 km. Our results contrast with the substantial level of cryptic diversity usually revealed by molecular studies, of shallow-water benthic and planktonic marine organisms. The very broad ranges of the deep-sea foraminifera that we examined support the hypothesis of global distribution of small eukaryotes and suggest that deep-sea biodiversity may be more modest at global scales than present estimates suggest. [source]


Male reproductive competition in spawning aggregations of cod (Gadus morhua, L.)

MOLECULAR ECOLOGY, Issue 1 2002
D Bekkevold
Abstract Reproductive competition may lead to a large skew in reproductive success among individuals. Very few studies have analysed the paternity contribution of individual males in spawning aggregations of fish species with huge census population sizes. We quantified the variance in male reproductive success in spawning aggregations of cod under experimental conditions over an entire spawning season. Male reproductive success was estimated by microsatellite-based parentage analysis of offspring produced in six separate groups of spawning cod. In total, 1340 offspring and 102 spawnings distributed across a spawning season were analysed. Our results show that multiple males contributed sperm to most spawnings but that paternity frequencies were highly skewed among males, with larger males on average siring higher proportions of offspring. It was further indicated that male reproductive success was dependent on the magnitude of the size difference between a female and a male. We discuss our results in relation to the cod mating system. Finally, we suggest that the highly skewed distribution of paternity success observed in cod may be a factor contributing to the low effective population size/census population size ratios observed in many marine organisms. [source]


A novel DNA modification by sulphur

MOLECULAR MICROBIOLOGY, Issue 5 2005
Xiufen Zhou
Summary Streptomyces lividans has a novel DNA modification, which sensitises its DNA to degradation during electrophoresis (the Dnd phenotype). The entire gene cluster (dnd) involved in this modification was localized on an 8 kb DNA fragment and was expressed in a S. lividans deletion mutant (dnd) and in several heterologous hosts. Disruption of the dnd locus abolishes the Dnd phenotype, and gain of the dnd locus conferred the Dnd phenotype respectively. Extensive analysis of the dnd gene cluster revealed five open reading frames, whose hypothetic functions suggested an incorporation of sulphur or a sulphur-containing substance into S. lividans genome, yet in an unknown manner. The Dnd phenotype was also discovered to exist in DNA of widespread bacterial species of variable origin and diverse habitat. Similarly organized gene clusters were found in several bacterial genomes representing different genera and in eDNA of marine organisms, suggesting such modification as a widespread phenomenon. A coincidence between the Dnd phenotype and DNA modification by sulphur was demonstrated to occur in several representative bacterial genomes by the in vivo35S-labelling experiments. [source]


Electron Backscatter Diffraction Study of Brachiopod Shell Calcite , Microscale Phase and Texture Analysis of a Polycrystalline Biomaterial

PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 5-6 2008
Wolfgang W. Schmahl
Abstract Electron backscatter diffraction (EBSD) is an easy to use and highly automated microdiffraction method suitable for the determination of crystallographic phase and crystallite orientation. The high level of hierarchical structural organization in the shells of marine organisms was studied. Calcite brachiopod shell materials were found to belong to three types of microstructure: nano- to microcrystalline layers of acicular crystals, fiber composites with calcite single crystal fibers with [uv0] morphological axes, and material formed by columnar crystals with [001] morphological axes selected by competitive growth. [source]


Properties of ion channels in the protoplasts of the Mediterranean seagrass Posidonia oceanica

PLANT CELL & ENVIRONMENT, Issue 3 2004
A. CARPANETO
ABSTRACT Posidonia oceanica (L) Delile, a seagrass endemic of the Mediterranean sea, provides food and shelter to marine organisms. As environment contamination and variation in physico-chemical parameters may compromise the survival of the few Posidonia genotypes living in the Mediterranean, comprehending the molecular mechanisms controlling Posidonia growth and development is increasingly important. In the present study the properties of ion channels in P. oceanica plasma membranes studied by the patch-clamp technique in protoplasts obtained from the young non-photosynthetic leaves were investigated. In protoplasts that were presumably originated from sheath cells surrounding the vascular bundles of the leaves, an outward-rectifying time-dependent channel with a single channel conductance of 58 ± 2 pS which did not inactivate, was selective for potassium and impermeable to monovalent cations such as Na+, Li+ and Cs+ was identified. In the same protoplasts, an inward-rectifying channel that has a time-dependent component with single channel conductance of the order of 10 pS, a marked selectivity for potassium and no permeation to sodium was also identified, as was a third type of channel that did not display any ionic selectivity and was reversibly inhibited by tetraethylammonium and lanthanum. A comparison of Posidonia channel characteristics with channels identified in terrestrial plants and other halophytic plants is included. [source]


Bioorganic studies on marine natural products,diverse chemical structures and bioactivities

THE CHEMICAL RECORD, Issue 5 2006
Daisuke Uemura
Abstract The discovery of new molecules contributes to the development of basic scientific concepts, leads to valuable drug-oriented compounds, and suggests possible new pharmacological reagents. Newly discovered substances can even be responsible for the creation of new scientific fields. Due to the radically different habitats of marine organisms, several notable examples of secondary metabolites from marine organisms have been isolated. Two of the most remarkable properties of these compounds are their structural and physiological diversities. These bioactive compounds are candidates for drugs or biological probes for physiological studies. Palytoxin is a polyol compound that shows extreme acute toxicity. Halichondrins are remarkable antitumor macrolides from sponge. Pinnatoxins, potent shellfish poisons, cause food poisoning. This paper describes bioorganic studies on such newly discovered wonders of nature. Several bioactive marine alkaloids and important substances involved in dynamic ecological systems are also described. © 2006 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 6: 235,248; 2006: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.20087 [source]


Distribution and fate of biologically formed organoarsenicals in coastal marine sediment

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 8 2005
Mio Takeuchi
Abstract Marine organisms, including phyto- and zoo-plankton, macroalgae, and animals, concentrate arsenic in various organic forms. However, the distribution and fate of these organoarsenicals in marine environments remains unclear. In this study, the distribution of organoarsenicals in coastal marine sediment in Otsuchi Bay, Japan, has been determined. Methylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, arsenocholine and other unidentified arsenic species were detected in marine sediment by high-performance liquid chromatography,inductively coupled plasma mass spectrometry analysis of methanol,water extracts. Arsenobetaine was the dominant organoarsenical at four of the seven stations where tests were carried out, and unidentified species or dimethylarsinic acid dominated at the other stations. Total organoarsenicals (as arsenic) in the surface sediment amounted to 10.6,47.5 µg kg,1 dry sediment. Core analysis revealed that concentrations of organoarsenicals decreased with depth, and they are considered to be degraded within 60 years of deposition. These results show that organoarsenicals formed by marine organisms are delivered to the sediment and can be degraded within several decades. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Comparative activity and stability under salinity conditions of different antimicrobial peptides isolated from aquatic animals

AQUACULTURE RESEARCH, Issue 16 2009
Sara Emelie Löfgren
Abstract This study reports the in vitro activity of six antimicrobial peptides (AMPs) produced by aquatic animals (most marine invertebrates): tachyplesin (Tach), magainin (Mag), clavanin (Clav), penaeidin (Pen), mytilin (Myt) and antilipopolysaccharide factor (ALF) against marine vibrios, filamentous fungi and yeast. Their stability under salinity conditions and seawater was also examined. The results showed that Mag, Myt and especially Tach and ALF (minimum inhibitory concentration<1.5 ,M) had a potent activity against all tested vibrio species, whereas Clav and Pen were ineffective (up to 50 ,M). With respect to the antifungal activity, each AMP had a different potency according to the fungal species. In general terms, Tach was the most potent peptide, followed by Mag. Interestingly, Tach, Myt and ALF had a significant effect on the filamentous fungus Fusarium solani that could be pathogenic to marine organisms. All AMPs had a tendency to decrease or lose their activity at high salinity (>225 mM NaCl). Tach and Myt were the most stable peptides, maintaining significant activity under seawater salinity (450 mM). Curiously, all peptides lost their effect under seawater conditions. The results suggest that Tach, ALF and Myt are the most promising candidates for potential therapeutic use in farmed-marine species, because all have a significant and broad antimicrobial activity maintained at high salinity. [source]


Crystallization and preliminary X-ray analysis of mannosyl-3-phosphoglycerate synthase from Thermus thermophilus HB27

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2009
Susana Gonçalves
Mannosylglycerate (MG) is a compatible solute that is widespread in marine organisms that are adapted to hot environments, with its intracellular pool generally increasing in response to osmotic stress. These observations suggest that MG plays a relevant role in osmoadaptation and thermoadaptation. The pathways for the synthesis of MG have been characterized in a number of thermophilic and hyperthermophilic organisms. Mannosyl-3-phosphoglycerate synthase (MpgS) is a key enzyme in the biosynthesis of MG. Here, the purification, crystallization and preliminary crystallographic characterization of apo MpgS from Thermus thermophilus HB27 are reported. The addition of Zn2+ to the crystallization buffer was essential in order to obtain crystals. The crystals belonged to one of the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = b = 113, c = 197,Å. Diffraction data were obtained to a resolution of 2.97,Å. [source]


On the electrodetection threshold of aquatic vertebrates with ampullary or mucous gland electroreceptor organs

BIOLOGICAL REVIEWS, Issue 3 2007
Rob C. Peters
Abstract Reinterpretation of research on the electric sense in aquatic organisms with ampullary organs results in the following conclusions. The detection limit of limnic vertebrates with ampullary organs is 1 ,Vcm,1, and of marine fish is 20 nVcm,1. Angular movements are essential for stimulation of the ampullary system in uniform d.c. fields. Angular movements in the geomagnetic field also generate induction voltages, which exceed the 20 nVcm,1 limit in marine fish. As a result, marine electrosensitive fish are sensitive to motion in the geomagnetic field, whereas limnic fish are not. Angular swimming movements generate a.c. stimuli, which act like the noise in a stochastic resonance system, and result in a detection threshold in marine organisms as low as 1 nVcm,1. Fish in the benthic space are exposed to stronger electric stimuli than fish in the pelagic space. Benthic fish scan the orientation plane for the maximum potential difference with their raster of electroreceptor organs, in order to locate bioelectric prey. This behaviour explains why the detection threshold does not depend on fish size. Pelagic marine fish are mainly exposed to electric fields caused by movements in the geomagnetic field. The straight orientation courses found in certain shark species might indicate that the electric sense functions as a simple bisensor system. Symmetrical stimulation of the sensory raster would provide an easy way to keep a straight course with respect to a far-field stimulus. The same neural mechanism would be effective in the location of a bioelectric prey generating a near-field stimulus. The response criteria in conditioning experiments and in experiments with spontaneous reactions are discussed. [source]


Review: An overview about the structure,function relationship of marine sulfated homopolysaccharides with regular chemical structures,

BIOPOLYMERS, Issue 8 2009
Vitor H. Pomin
Abstract Efforts in both structural and biological studies of sulfated polysaccharides from marine organisms have increased significantly over the last 10 years. Marine invertebrates have been demonstrated to be a source of glycans with particularly well-defined chemical structures, although ordered structural patterns can also be found occasionally in algal sources such as red seaweeds. Clear and regular structural features are essential for a good understanding of the biological activities of these marine homopolysaccharides of which sulfated fucans and sulfated galactans are the most studied. Herein, the main structural features (sugar type, sulfation and glycosylation sites, and orientational binding preferences) of both sulfated fucans and galactans are individually reviewed with regard to their specific contributions to two frequently described biological functions: the acrosome reaction (a physiological event of sea-urchin fertilization), and the anticoagulant and antithrombotic activities (an alternative and highly desirable pharmacological application). © 2009 Wiley Periodicals, Inc. Biopolymers 91: 601,609, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Long-Chain Polyamines (LCPAs) from Marine Sponge: Possible Implication in Spicule Formation

CHEMBIOCHEM, Issue 14 2007
Satoko Matsunaga
Abstract Two distinct marine organisms, diatoms and sponges, deposit dissolved silicates to construct highly architectural and species-specific body supports. Several factors such as proteins, long-chain polyamines (LCPAs), or polypeptides modified with LCPAs are known to be involved in this process. The LCPAs contained in the silica walls of diatoms are thought to play pivotal roles in the silica deposition. In sponges, however, a protein called silicatein and several other proteins have been reported to be the factors involved in the silica deposition. However, no other factors involved in this process have been reported. We have identified the LCPAs from the marine sponge Axinyssa aculeata and present here some evidence that sponge-derived LCPAs can deposit silica and that the LCPA derivatives are associated with spicules. The results indicate a common chemistry between sponges and diatoms, the two major players in the biological circulation of silicon in the marine environment. A wide variety of organisms are known to utilize silica in their biological processes. Polyamines or other functional molecules might be involved, in combination with proteins, in their biosilicification process. [source]