Home About us Contact | |||
Marine Macroalgae (marine + macroalgae)
Selected AbstractsMarine macroalgae analyzed by mass spectrometry are rich sources of polyunsaturated fatty acids,JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 12 2005L. De Angelis Abstract Algae from cold water (Canada) and warm water (China) were analyzed for their total lipid content, and for their fatty acid (FA) composition and content. The major findings are that FA from Canadian algae are generally richer in polyunsaturated FA (PUFA), with a higher n-3/n-6 FA ratio, and a higher degree of total unsaturation. The 18 C, 4 double bonds FA (18 : 4 stearidonic acid, morotic acid as synonym) was detected in greater amounts in cold water samples. The high levels of total PUFA, and especially of n-3 FA in Canadian algae, suggests their possible utilizations for nutritional purposes. Copyright © 2005 John Wiley & Sons, Ltd. [source] Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrationsGLOBAL CHANGE BIOLOGY, Issue 9 2002Alvaro Israel Abstract Growth rates, photosynthetic responses and the activity, amount and CO2 affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were determined for common marine macroalgae grown in seawater (containing 14.5 ± 2.1 µM CO2) or CO2 -enriched seawater (averaging 52.8 ± 19.2 µM CO2). The algae were grown in 40 L fiberglass tanks (outdoor) for 4,15 weeks and in a field experimental setup for 5 days. Growth rates of the species studied (representing the three major divisions, i.e. Chlorophyta, Rhodophyta and Phaeophyta) were generally not significantly affected by the increased CO2 concentrations in the seawater medium. Rubisco characteristics of algae cultivated in CO2 -enriched seawater were similar to those of algae grown in nonenriched seawater. The lack of response of photosynthetic traits in these aquatic plants is likely to be because of the presence of CO2 concentrating mechanisms (CCMs) which rely on HCO3, utilization, the inorganic carbon (Ci) form that dominates the total Ci pool available in seawater. Significant changes on the productivity of these particular marine algae species would not be anticipated when facing future increasing atmospheric CO2 levels. [source] Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed HalimedaGLOBAL ECOLOGY, Issue 4 2009Heroen Verbruggen ABSTRACT Aim Because of their broad distribution in geographical and ecological dimensions, seaweeds (marine macroalgae) offer great potential as models for marine biogeographical inquiry and exploration of the interface between macroecology and macroevolution. This study aims to characterize evolutionary niche dynamics in the common green seaweed genus Halimeda, use the observed insights to gain understanding of the biogeographical history of the genus and predict habitats that can be targeted for the discovery of species of special biogeographical interest. Location Tropical and subtropical coastal waters. Methods The evolutionary history of the genus is characterized using molecular phylogenetics and relaxed molecular clock analysis. Niche modelling is carried out with maximum entropy techniques and uses macroecological data derived from global satellite imagery. Evolutionary niche dynamics are inferred through application of ancestral character state estimation. Results A nearly comprehensive molecular phylogeny of the genus was inferred from a six-locus dataset. Macroecological niche models showed that species distribution ranges are considerably smaller than their potential ranges. We show strong phylogenetic signal in various macroecological niche features. Main conclusions The evolution of Halimeda is characterized by conservatism for tropical, nutrient-depleted habitats, yet one section of the genus managed to invade colder habitats multiple times independently. Niche models indicate that the restricted geographical ranges of Halimeda species are not due to habitat unsuitability, strengthening the case for dispersal limitation. Niche models identified hotspots of habitat suitability of Caribbean species in the eastern Pacific Ocean. We propose that these hotspots be targeted for discovery of new species separated from their Caribbean siblings since the Pliocene rise of the Central American Isthmus. [source] PROPOSAL OF ECTOCARPUS SILICULOSUS (ECTOCARPALES, PHAEOPHYCEAE) AS A MODEL ORGANISM FOR BROWN ALGAL GENETICS AND GENOMICS,JOURNAL OF PHYCOLOGY, Issue 6 2004Akira F. Peters The emergence of model organisms that permit the application of a powerful combination of genomic and genetic approaches has been a major factor underlying the advances that have been made in the past decade in dissecting the molecular basis of a wide range of biological processes. However, the phylogenetic distance separating marine macroalgae from these model organisms, which are mostly from the animal, fungi, and higher plant lineages, limits the latters' applicability to problems specific to macroalgal biology. There is therefore a pressing need to develop similar models for the macroalgae. Here we describe a survey of potential model brown algae in which particular attention was paid to characteristics associated with a strong potential for genomic and genetic analysis, such as a small nuclear genome size, sexuality, and a short life cycle. Flow cytometry of nuclei isolated from zoids showed that species from the Ectocarpales possess smaller haploid genomes (127,290 Mbp) than current models among the Laminariales (580,720 Mbp) and Fucales (1095,1271 Mbp). Species of the Ectocarpales may complete their life histories in as little as 6 weeks in laboratory culture and are amenable to genetic analyses. Based on this study, we propose Ectocarpus siliculosus (Dillwyn) Lyngbye as an optimal choice for a general model organism for the molecular genetics of the brown algae. [source] WATER MOTION, MARINE MACROALGAL PHYSIOLOGY, AND PRODUCTIONJOURNAL OF PHYCOLOGY, Issue 3 2000Catriona L. Hurd Water motion is a key determinant of marine macroalgal production, influencing directly or indirectly physiological rates and community structure. Our understanding of how marine macroalgae interact with their hydrodynamic environment has increased substantially over the past 20 years, due to the application of tools such as flow visualization to aquatic vegetation, and in situ measurements of seawater velocity and turbulence. This review considers how the hydrodynamic environment in which macroalgae grow influences their ability to acquire essential resources and how macroalgae might respond physiologically to fluctuations in their hydrodynamic regime with a focus on: (1) the biochemical processes occurring within the diffusion boundary layer (DBL) that might reduce rates of macroalgal production; (2) time scales over which measurements of velocity and DBL processes should be made, discussing the likelihood of in situ mass transfer limitation; (3) if and how macroalgal morphology influences resource acquisition in slow flows; and (4) ecobiomechanics and how hydrodynamic drag might influence resource acquisition and allocation. Finally, the concept that macroalgal production is enhanced in wave-exposed versus sheltered habitats is discussed. [source] Daily dynamics of photosynthesis of the freshwater red alga Sirodotia delicatula (Batrachospermales, Rhodophyta)PHYCOLOGICAL RESEARCH, Issue 4 2009Thiago Kusakariba SUMMARY The daily course of photosynthetic parameters of a population of the freshwater red alga Sirodotia delicatula from São Paulo State, Brazil (20°43,24,S, 49°18,21,W) was investigated under natural and laboratory conditions using dissolved oxygen and in vivo chlorophyll fluorescence techniques. Field specimens in laboratory conditions showed a defined daily pattern for net photosynthesis (NP) with two peaks observed in marine macroalgae and some freshwater red algae: the first (the highest) during the morning, and the second (the lowest and less evident) during the afternoon. Values of electron transport rate did not show a clear pattern of daily variation. NP results suggest the existence of an endogenous rhythm controlling photosynthesis. The study under natural conditions in two contrasting periods (autumn (June) and spring (October)) showed that the daily course of effective and potential quantum yield values was negatively correlated with irradiance and values were similar in the beginning and end of the day. These data evidenced, respectively, high excitement pressure on photosystem II and good recovery capacity (with lower values in spring) and a lack of irreversible photodamage to photosynthetic apparatus due to the prolonged exposure to high irradiances. Non-photochemical quenching values were also negatively correlated with the irradiance, suggesting a low dissipation capacity of excess energy absorbed by reaction centers. The results evidenced a typical pattern of daily variation with evident response to irradiance. [source] Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrationsPLANT CELL & ENVIRONMENT, Issue 6 2007ERICA B. YOUNG ABSTRACT Nitrogen metabolism was examined in the intertidal seaweeds Fucus vesiculosus, Fucus serratus, Fucus spiralis and Laminaria digitata in a temperate Irish sea lough. Internal NO3 - storage, total N content and nitrate reductase activity (NRA) were most affected by ambient NO3 - , with highest values in winter, when ambient NO3 - was maximum, and declined with NO3 - during summer. In all species, NRA was six times higher in winter than in summer, and was markedly higher in Fucus species (e.g. 256 ± 33 nmol NO3 - min,1 g,1 in F. vesiculosus versus 55 ± 17 nmol NO3 - min,1 g,1 in L. digitata). Temperature and light were less important factors for N metabolism, but influenced in situ photosynthesis and respiration rates. NO3 - assimilating capacity (calculated from NRA) exceeded N demand (calculated from net photosynthesis rates and C : N ratios) by a factor of 0.7,50.0, yet seaweeds stored significant NO3 - (up to 40,86 µmol g,1). C : N ratio also increased with height in the intertidal zone (lowest in L. digitata and highest in F. spiralis), indicating that tidal emersion also significantly constrained N metabolism. These results suggest that, in contrast to the tight relationship between N and C metabolism in many microalgae, N and C metabolism could be uncoupled in marine macroalgae, which might be an important adaptation to the intertidal environment. [source] |