Marine Gastropod (marine + gastropod)

Distribution by Scientific Domains


Selected Abstracts


Using molecular and quantitative variation for assessing genetic impacts on Nucella lapillus populations after local extinction and recolonization

INTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 2 2006
Isabelle Colson
Abstract The dogwhelk Nucella lapillus is a predatory marine gastropod living on rocky shores in the North Atlantic. As with many other gastropod species, Nucella was affected by tributyltin (TBT) pollution during the 1970s and 1980s, and local populations underwent extinction. After a partial ban on TBT in the UK in 1987, vacant sites have been recolonized. Levels of genetic diversity and quantitative genetic variation in shell form were compared between recolonized sites and sites that showed continuous population at three localities across the British Isles. Overall, estimates of genetic diversity were only slightly lower in recolonized populations, suggesting that populations have recovered from previous impacts due to the relatively high levels of migration from non-impacted sites. Molecular and quantitative analyses are broadly concordant and a positive correlation was observed (although not statistically significant) between molecular and quantitative estimates of genetic diversity, indicating the potential usefulness of quantitative methods to complement molecular population genetics analyses. [source]


Contrasting mtDNA diversity and population structure in a direct-developing marine gastropod and its trematode parasites

MOLECULAR ECOLOGY, Issue 22 2009
DEVON B. KEENEY
Abstract The comparative genetic structure of hosts and their parasites has important implications for their coevolution, but has been investigated in relatively few systems. In this study, we analysed the genetic structure and diversity of the New Zealand intertidal snail Zeacumantus subcarinatus (n = 330) and two of its trematode parasites, Maritrema novaezealandensis (n = 269) and Philophthalmus sp. (n = 246), using cytochrome c oxidase subunit I gene (COI) sequences. Snails and trematodes were examined from 11 collection sites representing three regions on the South Island of New Zealand. Zeacumantus subcarinatus displayed low genetic diversity per geographic locality, strong genetic structure following an isolation by distance pattern, and low migration rates at the scale of the study. In contrast, M. novaezealandensis possessed high genetic diversity, genetic homogeneity among collection sites and high migration rates. Genetic diversity and migration rates were typically lower for Philophthalmus sp. compared to M. novaezealandensis and it displayed weak to moderate genetic structure. The observed patterns likely result from the limited dispersal ability of the direct developing snail and the utilization of bird definitive hosts by the trematodes. In addition, snails may occasionally experience long-distance dispersal. Discrepancies between trematode species may result from differences in their effective population sizes and/or life history traits. [source]


How to Produce a Chemical Defense: Structural Elucidation and Anatomical Distribution of Aplysioviolin and Phycoerythrobilin in the Sea Hare Aplysia californica

CHEMISTRY & BIODIVERSITY, Issue 5 2010
Michiya Kamio
Abstract We previously used bioassay-guided fractionation to identify phycoerythrobilin (1) and its monomethyl ester, aplysioviolin (2), as components in the ink secretion of a marine gastropod, the sea hare Aplysia californica, that act as chemical deterrents against predatory blue crabs. This was the first report of 1 as a natural product. Compound 2 was previously reported as a natural product from three species of Aplysia (A. fasciata, A. dactylomela, and A. parvula), but the reported structure and composition of stereoisomers of 2 are different among these species. Sea hares are thought to produce 2 from phycoerythrin, a photosynthetic pigment in their red-algal diet composed of a phycobiliprotein covalently linked to the chromophore 1, by cleavage of the covalent bond and methylation of 1, but neither the sequence nor the anatomical location of the cleavage and methylation is known. In this study, we clarify the structure of 1 and 2 in ink secretion of A. californica, and describe the distribution of 1 and 2 in the tissues of sea hares. We conclude that cleavage of the covalent bond in phycoerythrin occurs first, forming 1 in the digestive gland, followed by methylation of 1 to yield 2 in the ink gland. [source]


Environmental determinants correlated to Vibrio harveyi -mediated death of marine gastropods

ENVIRONMENTAL MICROBIOLOGY, Issue 1 2010
Youhei Fukui
Summary Vibrio harveyi is an emerging pathogen that causes mass mortality in a wide variety of marine animal species; however, it is still unclear which environmental determinants correlate V. harveyi dynamics and the bacterium-mediated death of marine animal life. We conducted a correlation analysis over a 5-year period (2003,2007) analysing the following data: V. harveyi abundance, marine animal mortality and environmental variables (seawater temperature, salinity, pH, chlorophyll a, rainfall and total viable bacterial counts). The samples were collected from a coastal area in northern Japan, where deaths of a marine gastropod species (Haliotis discus hannai) have been reported. Our analysis revealed significant positive correlations between average seawater temperature and average V. harveyi abundance (R = 0.955; P < 0.05), and between average seawater temperature and V. harveyi -mediated abalone death (R = 0.931; P < 0.05). Based on the regression model, n°C rise in seawater temperature gave rise to a 21n -fold increase in the risk of mortality caused by V. harveyi infection. This is the first report providing evidence of the strong positive correlation between seawater temperature and V. harveyi -mediated death of marine species. [source]


The problem of similarity: analysis of repeated patterns of microsculpture on gastropod larval shells

INVERTEBRATE BIOLOGY, Issue 3 2004
Carole S. Hickman
Abstract. The problem of similarity is one of explaining the causes of striking resemblances between patterns and architectural themes that recur in organisms at various scales of biological organization. Classical explanations that have considered only the alternatives of homology and analogy overlook similarities of form that are primarily a consequence of fabrication, conveying little information about evolutionary relationships or functional role. When viewed at successively higher magnifications and when mapped onto a phylogeny, patterns of delicate cancellate microsculpture and granular microprotuberances on the surfaces of larval shells of marine gastropods fail to meet the predictions of exclusively historical or exclusively functional explanations, but are shown to be rich in fabricational information. Similar patterns suggest that early biomineralization of the initial organic shell is under weaker biological control than the processes that modulate assembly of the multi-layered, hierarchically-organized composite materials of the adult shell. Some patterns suggest remote biomineralization, without direct influence of living tissue. Scanning electron microscopy of larval shell features reveals previously undetected variation on basic themes that may have implications for the traditional disciplines of systematics, functional morphology, and fabricational morphology. The integration of the approaches of the traditional divisions of biology is required for full explanation of similarity and to generate a unified set of principles for the analysis of form in living and fossil organisms. [source]


Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2001
THOMAS F. DUDA JR
Specialized predators on polychaetes, fishes, hemichordates or other molluscs, members of the predominantly tropical gastropod genus Conus diversified rapidly during the Miocene to constitute the most species-rich modern marine genus. We used DNA sequence data from mitochondrial and nuclear loci of 76 Conus species to generate species-level phylogenetic hypotheses for this genus and then mapped known diets onto the phylogenies to elucidate the origins and evolutionary histories of different feeding specializations. The results indicate that dramatically new feeding modes arose only a few times, that the most derived feeding modes likely arose in the Miocene, and that much of the known diversity of Conus that was generated during Miocene radiations has survived to the present. [source]