Home About us Contact | |||
Marching Method (marching + method)
Kinds of Marching Method Selected Abstracts2-D/3-D multiply transmitted, converted and reflected arrivals in complex layered media with the modified shortest path methodGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2009Chao-Ying Bai SUMMARY Grid-cell based schemes for tracing seismic arrivals, such as the finite difference eikonal equation solver or the shortest path method (SPM), are conventionally confined to locating first arrivals only. However, later arrivals are numerous and sometimes of greater amplitude than the first arrivals, making them valuable information, with the potential to be used for precise earthquake location, high-resolution seismic tomography, real-time automatic onset picking and identification of multiple events on seismic exploration data. The purpose of this study is to introduce a modified SPM (MSPM) for tracking multiple arrivals comprising any kind of combination of transmissions, conversions and reflections in complex 2-D/3-D layered media. A practical approach known as the multistage scheme is incorporated into the MSPM to propagate seismic wave fronts from one interface (or subsurface structure for 3-D application) to the next. By treating each layer that the wave front enters as an independent computational domain, one obtains a transmitted and/or converted branch of later arrivals by reinitializing it in the adjacent layer, and a reflected and/or converted branch of later arrivals by reinitializing it in the incident layer. A simple local grid refinement scheme at the layer interface is used to maintain the same accuracy as in the one-stage MSPM application in tracing first arrivals. Benchmark tests against the multistage fast marching method are undertaken to assess the solution accuracy and the computational efficiency. Several examples are presented that demonstrate the viability of the multistage MSPM in highly complex layered media. Even in the presence of velocity variations, such as the Marmousi model, or interfaces exhibiting a relatively high curvature, later arrivals composed of any combination of the transmitted, converted and reflected events are tracked accurately. This is because the multistage MSPM retains the desirable properties of a single-stage MSPM: high computational efficiency and a high accuracy compared with the multistage FMM scheme. [source] Traveltime computation with the linearized eikonal equation for anisotropic mediaGEOPHYSICAL PROSPECTING, Issue 4 2002Tariq Alkhalifah A linearized eikonal equation is developed for transversely isotropic (TI) media with a vertical symmetry axis (VTI). It is linear with respect to perturbations in the horizontal velocity or the anisotropy parameter ,. An iterative linearization of the eikonal equation is used as the basis for an algorithm of finite-difference traveltime computations. A practical implementation of this iterative technique is to start with a background model that consists of an elliptically anisotropic, inhomogeneous medium, since traveltimes for this type of medium can be calculated efficiently using eikonal solvers, such as the fast marching method. This constrains the perturbation to changes in the anisotropy parameter , (the parameter most responsible for imaging improvements in anisotropic media). The iterative implementation includes repetitive calculation of , from traveltimes, which is then used to evaluate the perturbation needed for the next round of traveltime calculations using the linearized eikonal equation. Unlike isotropic media, interpolation is needed to estimate , in areas where the traveltime field is independent of ,, such as areas where the wave propagates vertically. Typically, two to three iterations can give sufficient accuracy in traveltimes for imaging applications. The cost of each iteration is slightly less than the cost of a typical eikonal solver. However, this method will ultimately provide traveltime solutions for VTI media. The main limitation of the method is that some smoothness of the medium is required for the iterative implementation to work, especially since we evaluate derivatives of the traveltime field as part of the iterative approach. If a single perturbation is sufficient for the traveltime calculation, which may be the case for weak anisotropy, no smoothness of the medium is necessary. Numerical tests demonstrate the robustness and efficiency of this approach. [source] Coupled ghost fluid/two-phase level set method for curvilinear body-fitted gridsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2007Juntao Huang Abstract A coupled ghost fluid/two-phase level set method to simulate air/water turbulent flow for complex geometries using curvilinear body-fitted grids is presented. The proposed method is intended to treat ship hydrodynamics problems. The original level set method for moving interface flows was based on Heaviside functions to smooth all fluid properties across the interface. We call this the Heaviside function method (HFM). The HFM requires fine grids across the interface. The ghost fluid method (GFM) has been designed to explicitly enforce the interfacial jump conditions, but the implementation of the jump conditions in curvilinear grids is intricate. To overcome these difficulties a coupled GFM/HFM method was developed in which approximate jump conditions are derived for piezometric pressure and velocity and pressure gradients based on exact continuous velocity and stress and jump in momentum conditions with the jump in density maintained but continuity of the molecular and turbulent viscosities imposed. The implementation of the ghost points is such that no duplication of memory storage is necessary. The level set method is adopted to locate the air/water interface, and a fast marching method was implemented in curvilinear grids to reinitialize the level set function. Validations are performed for three tests: super- and sub-critical flow without wave breaking and an impulsive plunging wave breaking over 2D submerged bumps, and the flow around surface combatant model DTMB 5512. Comparisons are made against experimental data, HFM and single-phase level set computations. The proposed method performed very well and shows great potential to treat complicated turbulent flows related to ship flows. Copyright © 2007 John Wiley & Sons, Ltd. [source] Modified method of characteristics for solving population balance equationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2003Laurent Pilon Abstract This paper presents a new numerical method for solving the population balance equation using the modified method of characteristics. Aggregation and break-up are neglected but the density function variations in the three-dimensional space and its dependence on the external fields are accounted for. The method is an interpretation of the Lagrangian approach. Based on a pre-specified grid, it follows the particles backward in time as opposed to forward in the case of traditional method of characteristics. Unlike the direct marching method, the inverse marching method uses a fixed grid thus, making it compatible with other numerical schemes (e.g. finite-volume, finite elements) that may be used to solve other coupled equations such as the mass, momentum, and energy conservation equations. The numerical solutions are compared with the exact analytical solutions for simple one-dimensional flow cases. Very good agreement between the numerical and the theoretical solutions has been obtained confirming the validity of the numerical procedure and the associated computer program. Copyright © 2003 John Wiley & Sons, Ltd. [source] A CFL-like constraint for the fast marching method in inhomogeneous chemical kineticsINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2008Ramón Escobedo Abstract Level sets and fast marching methods are a widely used technique for problems with moving interfaces. Chemical kinetics has been recently added to this family, for the description of reaction paths and chemical waves in homogeneous media, in which the velocity of the interface is described by a given field. A more general framework must consider variable velocities due to inhomogeneities induced by chemical changes. In this case, a constraint must be satisfied for the correct use of fast marching method. We deduce an analytical expression of this constraint when the Godunov scheme is used to solve the Eikonal equation, and we present numerical simulations of a case which must be enforced to obey the constraint. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 [source] |