Home About us Contact | |||
Martian Atmosphere (martian + atmosphere)
Selected Abstracts39Ar- 40Ar dating of the Zagami Martian shergottite and implications for magma origin of excess 40ArMETEORITICS & PLANETARY SCIENCE, Issue 7 2008Donald D. BOGARD 1992, 1999). Like several shergottites, Zagami contains excess 40Ar relative to its formation age. To understand the origin of this excess 40Ar, we made 39Ar- 40Ar analyses on plagioclase and pyroxene minerals from two phases representing different stages in the magma evolution. Surprisingly, all these separates show similar concentrations of excess 40Ar, ,1 × 10,6 cm3/g. We present arguments against this excess 40Ar having been introduced from the Martian atmosphere as impact glass. We also present evidence against excess 40Ar being a partially degassed residue from a basalt that actually formed ,4 Gyr ago. We utilize our experimental data on Ar diffusion in Zagami and evidence that it was shock-heated to only ,70 °C, and we assume this heating occurred during an ejection from Mars ,3 Myr ago. With these constraints, thermal considerations necessitates either that its ejected mass was impossibly large, or that its shock-heating temperature was an order of magnitude higher than that measured. We suggest that this excess 40Ar was inherited from the Zagami magma, and that it was introduced into the magma either by degassing of a larger volume of material or by early assimilation of old, K-rich crustal material. Similar concentrations of excess 40Ar in the analyzed separates imply that this magma maintained a relatively constant 40Ar concentration throughout its crystallization. This likely occurred through volatile degassing as the magma rose toward the surface and lithostatic pressure was released. These concepts have implications for excess 40Ar in other shergottites. [source] Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristicsMETEORITICS & PLANETARY SCIENCE, Issue 10 2006Nadine G. Barlow Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single-layer ejecta (SLE) morphology is most consistent with impact into an ice-rich target. Double-layer ejecta (DLE) and multiple-layer ejecta (MLE) craters also likely form in volatile-rich materials, but the interaction of the ejecta curtain and target-produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double-layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice-soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere. [source] A fast computation of the secondary ion production in the ionosphere of MarsMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2009William P. Nicholson ABSTRACT We present an analytic method for the rapid computation of secondary ion and electron production due to electron impact as suprathermal electrons produced by primary photoproduction propagate through the neutral background Martian atmosphere. We use a one-dimensional kinetic model, Trans -Mars, that solves a stationary Boltzmann transport equation to describe the ionosphere of Mars with the neutral background atmosphere (temperatures, number densities and geopotential heights) provided by a three-dimensional global circulation model, MarTIM. Parameters are given to allow the rapid computation of secondary ion production for 11 ion species (CO+2, CO++2, CO+, C+, N+2, N++2, N+, O+2, O++2, O+, O++) as well as for the secondary electron production. We use the neutral global circulation model to show that while the efficiency (,) of ion and electron production (ratio of secondary to primary production) does vary with solar zenith angle it can be parametrized with a simple function, which is given. We also show that variations with solar cycle and solar longitude are negligible about the region of the primary and secondary production peaks. [source] Effects of CO2 and dust on present-day solar radiation and climate on MarsTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 611 2005Hannu Savijärvi Abstract A comprehensive spectrum-resolving radiative transfer model (SRM) was used to simulate the average, present-day, solar radiation field on Mars. A CO2 -only 6 hPa Martian atmosphere absorbs about 1% of zenith solar radiation, producing a modest heating rate of 4,5 K day,1 in the lowest 10 km. The trace gases have an insignificant effect but airborne dust reduces the downwelling solar flux effectively, and the reflected flux somewhat less. This produces an anti-greenhouse trend (cooling at the surface, warming within the atmosphere, reflection at the top), which increases strongly with the dust load. For instance, with dust visible optical depth of unity and sun in zenith, the surface solar irradiation is attenuated by 26% and the solar heating rate increases to about 70 K day,1 in the lowest 25 km. The numbers are however strongly dependent on the optical properties of the dust, which are not known very well. Several fast two-stream methods for dust were compared with the SRM results. Their common systematic errors were reduced by a simple, physically-based correction. The global albedo of Mars was then studied as a function of dust load, dust optics and surface albedo. The crossover from added airborne dust tending to make the whole planet look whiter or darker occurred at surface albedo of about 35%, nearly independently of the dust load. We demonstrate, however, that this value is sensitive to the optical properties of the assumed dust. Copyright © 2005 Royal Meteorological Society [source] Investigating atmospheric predictability on Mars using breeding vectors in a general-circulation modelTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 603 2004C. E. Newman Abstract A breeding vectors approach is used to investigate the hypothesis that the Martian atmosphere is predictable at certain times of year, by identifying the fastest-growing modes of instability at different times in a Mars general-circulation model. Results indicate that the period from northern mid-spring until mid-autumn is remarkably predictable, with negative global growth rates for a range of conditions, in contrast to the situation on the earth. From northern late autumn to early spring growing modes do occur, peaking in northern high latitudes and near winter solstice. Reducing the size of the initial perturbations increases global growth rates in most cases, supporting the idea that instabilities which saturate nonlinearly at lower amplitudes have generally faster growth rates. In late autumn/early winter the fastest-growing modes (,bred vectors') are around the north pole, increase with dust loading, and probably grow via barotropic as well as baroclinic energy conversion. In northern late winter/early spring the bred vectors are around the north pole and are strongly baroclinic in nature. As dust loading (and with it the global circulation strength) is increased their growth rates first decrease, as the baroclinic mode is suppressed, then increase again as the fastest-growing instabilities switch to being those which dominated earlier in the year. If dust levels are very low during late northern autumn (late southern spring) then baroclinic modes are also found around the spring pole in the south, though for a slight increase in dust loading the dominant modes shift back to northern high latitudes. The bred vectors are also used as perturbations to the initial conditions for ensemble simulations. One possible application within the Mars model is as a means of identifying regions and times when dust-lifting activity (related to surface wind stress) might show significant interannual variability for a given model configuration, without the need to perform long, computationally expensive multi-year model runs with each new set-up. This is tested for a time of year when previous multi-year experiments showed significant variability in dust storm onset in the region north of Chryse. Despite the model having no feedbacks between dust lifting and atmospheric state (unlike the original multi-year run), the ensemble members still show maximum divergence in this region in terms of near-surface wind stress, suggesting both that this application deserves further testing, and that the intrinsic atmospheric variability alone may be important in producing interannual variability in this storm type. Copyright © 2004 Royal Meteorological Society [source] Hydrogen-isotopic compositions in Allan Hills 84001 and the evolution of the martian atmosphereMETEORITICS & PLANETARY SCIENCE, Issue 2 2000N. Sugiura The deviation seems to be caused by addition of varying amounts of terrestrial water in the case of carbonate. In the case of maskelynite, H is heterogeneously distributed and the deviation in ,D values seems to be due to mixing of this indigenous heavy H with isotopically normal H present in the SIMS chamber. The indigenous ,D value in ALH 84001 seems to be ,2000%,. Carbonate rather than maskelynite seems to be the main carrier of H in ALH 84001. Because ALH 84001 is ,4 Ga old, the H-isotopic composition suggests that a large fraction of the initial martian atmosphere had already escaped by 4 Ga. [source] Petrology and chemistry of the new shergottite Dar al Gani 476METEORITICS & PLANETARY SCIENCE, Issue 1 2000J. ZIPFEL The meteorite is classified as a basaltic shergottite and is only the 13th martian meteorite known to date. It has a porphyritic texture consisting of a fine-grained groundmass and larger olivines. The groundmass consists of pyroxene and feldspathic glass. Minor phases are oxides and sulfides as well as phosphates. The presence of olivine, orthopyroxene, and chromite is a feature that DaG 476 has in common with lithology A of Elephant Moraine (EET) A79001. However, in DaG 476, these phases appear to be early phenocrysts rather than xenocrysts. Shock features, such as twinning, mosaicism, and impact-melt pockets, are ubiquitous. Terrestrial weathering was severe and led to formation of carbonate veins following grain boundaries and cracks. With a molar MgO/(MgO + FeO) of 0.68, DaG 476 is the most magnesian member among the basaltic shergottites. Compositions of augite and pigeonite and some of the bulk element concentrations are intermediate between those of lherzolitic and basaltic shergottites. However, major elements, such as Fe and Ti, as well as LREE concentrations are considerably lower than in other shergottites. Noble gas concentrations are low and dominated by the mantle component previously found in Chassigny. A component, similar to that representing martian atmosphere, is virtually absent. The ejection age of 1.35 ± 0.10 Ma is older than that of EETA79001 and could possibly mark a distinct ejection. Dar al Gani 476 is classified as a basaltic shergottite based on its mineralogy. It has a fine-grained groundmass consisting of clinopyroxene, pigeonite and augite, feldspathic glass and chromite, Ti-chromite, ilmenite, sulfides, and whitlockite. Isolated olivine and single chromite grains occur in the groundmass. Orthopyroxene forms cores of some pigeonite grains. Shock-features, such as shock-twinning, mosaicism, cracks, and impact-melt pockets, are abundant. Severe weathering in the Sahara led to significant formation of carbonate veins crosscutting the entire meteorite. Dar al Gani 476 is distinct from other known shergottites. Chemically, it is the most magnesian member among known basaltic shergottites and intermediate in composition for most trace and major elements between Iherzolitic and basaltic shergottites. Unique are the very low bulk REE element abundances. The CI-normalized abundances of LREEs are even lower than those of Iherzolitic shergottites. The overall abundance pattern, however, is similar to that of QUE 94201. Textural evidence indicates that orthopyroxene, as well as olivine and chromite, crystallized as phenocrysts from a magma similar in composition to that of bulk DaG 476. Whether such a magma composition can be a shergottite parent melt or was formed by impact melting needs to be explored further. At this time, it cannot entirely be ruled out that these phases represent relics of disaggregated xenoliths that were incorporated and partially assimilated by a basaltic melt, although the texture does not support this possibility. Trapped noble gas concentrations are low and dominated by a Chassigny-like mantle component. Virtually no martian atmosphere was trapped in DaG 476 whole-rock splits. The exposure age of 1.26 ± 0.09 Ma is younger than that of most shergottites and closer to that of EETA79001. The ejection age of 1.35 ± 0.1 Ma could mark another distinct impact event. [source] |