Home About us Contact | |||
MAP Kinase Cascade (map + kinase_cascade)
Selected AbstractsKinase suppressor of RAS (KSR) amplifies the differentiation signal provided by low concentrations 1,25-dihydroxyvitamin D3JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004Xuening Wang The activity of kinase suppressor of ras (KSR), a kinase or a molecular scaffold upstream from Raf-1, is involved in the MEK/ERK MAP kinase cascade which can signal cell growth, survival, or differentiation, depending on the cellular context. We provide evidence here that KSR is upregulated in HL60 cells undergoing differentiation induced by low (0.3,3 nM) concentrations of 1,25-dihydroxyvitamin D3 (1,25D3), and an antisense oligo (AS), but not a sense oligo, to KSR inhibits this differentiation. The inhibition of differentiation by AS,KSR oligo was less apparent when the concentration of 1,25D3 was increased, suggesting that at the higher concentrations of 1,25D3 KSR is not essential for the signaling of the differentiated phenotype. The reduced differentiation of HL60 cells exposed to AS,KSR was paralleled by reduced phosphorylation of Raf-1 Ser 259, and of p90RSK, used here as read-out for MAPK cascade activity. Conversely, ectopic expression of Flag-tagged wild type KSR potentiated the differentiation-inducing effects of low concentrations of 1,25D3. Additional data suggest that the kinase activity of KSR is required for these effects, as transfection of a kinase inactive KSR construct did not significantly increase the 1,25D3 -induced differentiation. Enzyme assays performed with KSR immunoprecipitated from 1,25D3 -treated cells showed kinase activity when recombinant Raf-1 was used as the substrate, but not when the 1,25D3 -treated cells were pretreated with AS,KSR oligos. Taken together, these data suggest that KSR participates in signaling of monocytic differentiation by augmenting the strength of the signal transmitted through Raf-1 to downstream targets. J. Cell. Physiol. 198: 333,342, 2004© 2003 Wiley-Liss, Inc. [source] Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell,cell and cell,substrate adherence of S. cerevisiae S288cMOLECULAR MICROBIOLOGY, Issue 5 2007Lars Fichtner Summary Cell,cell and cell,surface adherence represents initial steps in forming multicellular aggregates or in establishing cell,surface interactions. The commonly used Saccharomyces cerevisiae laboratory strain S288c carries a flo8 mutation, and is only able to express the flocculin-encoding genes FLO1 and FLO11, when FLO8 is restored. We show here that the two flocculin genes exhibit differences in regulation to execute distinct functions under various environmental conditions. In contrast to the laboratory strain ,1278b, haploids of the S288c genetic background require FLO1 for cell,cell and cell,substrate adhesion, whereas FLO11 is required for pseudohyphae formation of diploids. In contrast to FLO11, FLO1 repression requires the Sin4p mediator tail component, but is independent of the repressor Sfl1p. FLO1 regulation also differs from FLO11, because it requires neither the KSS1 MAP kinase cascade nor the pathways which lead to the transcription factors Gcn4p or Msn1p. The protein kinase A pathway and the transcription factors Flo8p and Mss11p are the major regulators for FLO1 expression. Therefore, S. cerevisiae is prepared to simultaneously express two genes of its otherwise silenced FLO reservoir resulting in an appropriate cellular surface for different environments. [source] CPMK2, an SLT2-homologous mitogen-activated protein (MAP) kinase, is essential for pathogenesis of Claviceps purpurea on rye: evidence for a second conserved pathogenesis-related MAP kinase cascade in phytopathogenic fungiMOLECULAR MICROBIOLOGY, Issue 2 2002Géraldine Mey Summary Cpmk2 , encoding a mitogen-activated protein (MAP) kinase from the ascomycete Claviceps purpurea , is an orthologue of SLT2 from Saccharomyces cerevisiae , the first isolated from a biotrophic, non-appressorium-forming pathogen. Deletion mutants obtained by a gene replacement approach show impaired vegetative properties (no conidiation) and a significantly reduced virulence, although they retain a limited ability to colonize the host tissue. Increased sensitivity to protoplasting enzymes indicates that the cell wall structure of the mutants may be altered. As the phenotypes of these mutants are similar to those observed in strains of the rice pathogen, Magnaporthe grisea , that have been deprived of their MAP kinase gene mps1 , the ability of cpmk2 to complement the defects of , mps1 was investigated. Interestingly, the C. purpurea gene, under the control of its own promoter, was able to complement the M. grisea mutant phenotype: transformants were able to sporulate and form infection hyphae on onion epidermis and were fully pathogenic on barley leaves. This indicates that, despite the differences in infection strategies, which include host and organ specificity, mode of penetration and colonization of host tissue, CPMK2 / MPS1 defines a second MAP kinase cascade (after the Fus3p/PMK1 cascade) essential for fungal pathogenicity. [source] The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinereaMOLECULAR PLANT PATHOLOGY, Issue 1 2010ASTRID SCHAMBER SUMMARY In all fungi studied so far, mitogen-activated protein (MAP) kinase cascades serve as central signalling complexes that are involved in various aspects of growth, stress response and infection. In this work, putative components of the yeast Fus3/Kss1-type MAP kinase cascade and the putative downstream transcription factor Ste12 were analysed in the grey mould fungus Botrytis cinerea. Deletion mutants of the MAP triple kinase Ste11, the MAP kinase kinase Ste7 and the MAP kinase adaptor protein Ste50 all resulted in phenotypes similar to that of the previously described BMP1 MAP kinase mutant, namely defects in germination, delayed vegetative growth, reduced size of conidia, lack of sclerotia formation and loss of pathogenicity. Mutants lacking Ste12 showed normal germination, but delayed infection as a result of low penetration efficiency. Two differently spliced ste12 transcripts were detected, and both were able to complement the ste12 mutant, except for a defect in sclerotium formation, which was only corrected by the full-sized transcript. Overexpression of the smaller ste12 transcript resulted in delayed germination and strongly reduced infection. Bc-Gas2, a homologue of Magnaporthe grisea Gas2 that is required for appressorial function, was found to be non-essential for growth and infection, but its expression was under the control of both Bmp1 and Ste12. In summary, the role and regulatory connections of the Fus3/Kss1-type MAP kinase cascade in B. cinerea revealed both common and unique properties compared with those of other plant pathogenic fungi, and provide evidence for a regulatory link between the BMP1 MAP kinase cascade and Ste12. [source] Activation of NF-,B and IL-8 by Yersinia enterocolitica invasin protein is conferred by engagement of Rac1 and MAP kinase cascadesCELLULAR MICROBIOLOGY, Issue 12 2003Guntram A. Grassl Summary Yersinia enterocolitica triggers activation of the nuclear factor (NF)-,B and production of the proinflammatory chemokine interleukin (IL)-8 in intestinal epithelial cells. This activation is due to adhesion of the bacteria via their outer membrane protein invasin to the host cells. Using Clostridium difficile toxins that specifically inactivate small GTPases, and transfection of inhibitory proteins of the Rho-GTPases, we demonstrate that Rac1, but not Cdc42 or Rho, is required for activation of NF-,B by invasin. Invasin activated the mitogen activated protein kinases (MAPK) p38 and c-Jun N-terminal protein kinase (JNK) but not extracellular signal regulated kinase (ERK). The functional relevance of these pathways for invasin-mediated IL-8 expression was assessed by protein kinase inhibitors and dominant-negative kinase mutants. While NF-,B and JNK contribute to IL-8 transcription, p38 MAPK also acts through stabilization of IL-8 mRNA, as confirmed by quantitative RT-PCR and electrophoretic mobility shift assays. Transfection experiments with I-,B kinase (IKK)1 and IKK2 mutants indicate that the release of NF-,B from its cytoplasmic inhibitor I-,B and its translocation into the nucleus is mediated by these kinases. Our data identify Rac1 as a key intermediate in invasin-triggered IL-8 synthesis and demonstrate that maximum IL-8 induction involves several MAP kinase cascades. [source] |