MAP Kinase (map + kinase)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of MAP Kinase

  • erk map kinase

  • Terms modified by MAP Kinase

  • map kinase activation
  • map kinase activity
  • map kinase cascade
  • map kinase inhibitor
  • map kinase kinase
  • map kinase pathway

  • Selected Abstracts


    Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury

    GLIA, Issue 4 2005
    Xiaoqing Li
    Abstract Erythropoietin (Epo) expresses potent neuroprotective activity in the peripheral nervous system; however, the underlying mechanism remains incompletely understood. In this study, we demonstrate that Epo is upregulated in sciatic nerve after chronic constriction injury (CCI) and crush injury in rats, largely due to local Schwann cell production. In uninjured and injured nerves, Schwann cells also express Epo receptor (EpoR), and its expression is increased during Wallerian degeneration. CCI increased the number of Schwann cells at the injury site and the number was further increased by exogenously administered recombinant human Epo (rhEpo). To explore the activity of Epo in Schwann cells, primary cultures were established. These cells expressed cell-surface Epo receptors, with masses of 71 and 62 kDa, as determined by surface protein biotinylation and affinity precipitation. The 71-kDa species was rapidly but transiently tyrosine-phosphorylated in response to rhEpo. ERK/MAP kinase was also activated in rhEpo-treated Schwann cells; this response was blocked by pharmacologic antagonism of JAK-2. RhEpo promoted Schwann cell proliferation, as determined by BrdU incorporation. Cell proliferation was ERK/MAP kinase-dependent. These results support a model in which Schwann cells are a major target for Epo in injured peripheral nerves, perhaps within the context of an autocrine signaling pathway. EpoR-induced cell signaling and Schwann cell proliferation may protect injured peripheral nerves and promote regeneration. © 2005 Wiley-Liss, Inc. [source]


    Coupling of endothelin receptors to the ERK/MAP kinase pathway,

    FEBS JOURNAL, Issue 20 2001
    Roles of palmitoylation
    Endothelins are potent mitogens that stimulate extracellular signal-regulated kinases (ERK/MAP kinases) through their cognate G-protein-coupled receptors, ETA and ETB. To address the role of post-translational ET receptor modifications such as acylation on ERK activation and to identify relevant downstream effectors coupling the ET receptor to the ERK signaling cascades we have constructed a panel of palmitoylation-deficient ET receptor mutants with differential G, protein binding capacity. Endothelin-1 stimulation of wild-type ETA or ETB induced a fivefold to sixfold increase in ERK in COS-7 and CHO cells whereas full-length nonpalmitoylated ETA and ETB mutants failed to stimulate ERK. A truncated ETB lacking the C-terminal tail domain including putative phosphorylation and arrestin binding site(s) but retaining the critical palmitoylation site(s) was still able to fully stimulate ERK activation. Using mutated ET receptors with selective G-protein-coupling we found that endothelin-induced stimulation of G,q, but not of G,i or G,s, is essential for endothelin-mediated ERK activation. Inhibition of protein kinases A and C or epidermal growth factor receptor kinase failed to prevent ETA - and ETB -mediated ERK activation whereas blockage of phospholipase C-, completely abrogated endothelin-promoted ERK activation through ETA and ETB in recombinant COS-7 and native C6 cells. Complex formation of Ca2+ or inhibition of Src family tyrosine kinases prevented ET-1-induced ERK-2 activation in C6-cells. Our results indicate that endothelin-promoted ERK/MAPK activation criticially depends on palmitoylation but not on phosphorylation of ET receptors, and that the G,q/phospholipase C-,/Ca2+/Src signaling cascade is necessary for efficient coupling of ET receptors to the ERK/MAPK pathway. [source]


    Activation of MAP Kinase in Lumbar Spinothalamic Cells Is Required for Ejaculation

    THE JOURNAL OF SEXUAL MEDICINE, Issue 7 2010
    Michael D. Staudt MSc
    ABSTRACT Introduction., Ejaculation is a reflex controlled by a spinal ejaculation generator located in the lumbosacral spinal cord responsible for the coordination of genital sensory with autonomic and motor outputs that regulate ejaculation. In the male rat, a population of lumbar spinothalamic cells (LSt cells) comprises an essential component of the spinal ejaculation generator. LSt cells are activated with ejaculation, but the nature of the signal transduction pathways involved in this activation is unknown. Moreover, it is unknown if LSt cell activation is required for expression of ejaculation. Aim., The current study tested the hypothesis that ejaculatory reflexes are triggered via activation of the mitogen-activated protein (MAP) kinase signaling pathway in the LSt cells. Methods., Expression of phosphorylated extracellular signal-related kinases 1 and 2 (pERK) was investigated following mating behavior, or following ejaculation induced by electrical stimulation of the dorsal penile nerve (DPN) in anesthetized, spinalized male rats. Next, the effects of intrathecal or intraspinal delivery of Mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor U0126 on DPN stimulation-induced ejaculation was examined. Main Outcome Measures., Expression of pERK in LSt cells and associated areas was analyzed. Electromyographic recordings of the bulbocavernosus muscle were recorded in anesthetized, spinalized rats. Results., Results indicate that the MAP kinase signaling pathway is activated in LSt cells following ejaculation in mating animals or induced by DPN stimulation in anesthetized, spinalized animals. Moreover, ERK activation in LSt cells is an essential trigger for ejaculation, as DPN stimulation-induced reflexes were absent following administration of MEK inhibitor in the L3-L4 spinal area. Conclusion., These data provide insight into the nature of the signal transduction pathways involved in the activation of ejaculation through LSt cells. The data demonstrate that ERK activation in LSt cells is essential for ejaculation and contribute to a more detailed understanding of the spinal generation of ejaculation. Staudt MD, de Oliveira CVR, Lehman MN, McKenna KE, and Coolen LM. Activation of MAP kinase in lumbar spinothalamic cells is required for ejaculation. J Sex Med 2010;7:2445,2457. [source]


    Trimethylsilylpyrazoles as Novel Inhibitors of p38 MAP Kinase: A New Use of Silicon Bioisosteres in Medicinal Chemistry.

    CHEMINFORM, Issue 22 2007
    Matthew J. Barnes
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


    Design and Synthesis of Potent Pyridazine Inhibitors of p38 MAP Kinase.

    CHEMINFORM, Issue 36 2005
    Nuria Tamayo
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    Imidazopyrimidines, Potent Inhibitors of p38 MAP Kinase.

    CHEMINFORM, Issue 23 2003
    Kenneth C. Rupert
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    Human skeletal muscle cell differentiation is associated with changes in myogenic markers and enhanced insulin-mediated MAPK and PKB phosphorylation

    ACTA PHYSIOLOGICA, Issue 4 2004
    L. Al-Khalili
    Abstract Aim:, We hypothesized that myogenic differentiation of HSMC would yield a more insulin responsive phenotype. Methods:, We assessed expression of several proteins involved in insulin action or myogenesis during differentiation of primary human skeletal muscle cultures (HSMC). Results:, Differentiation increased creatine kinase activity and expression of desmin and myocyte enhancer factor (MEF)2C. No change in expression was observed for big mitogen-activated protein kinase (BMK1/ERK5), MEF2A, insulin receptor (IR), hexokinase II, and IR substrates 1 and 2, while expression of glycogen synthase, extracellular signal-regulated kinase 1 and 2 (ERK1/2 MAP kinase) and the insulin responsive aminopeptidase increased after differentiation. In contrast to protein kinase B (PKB)a, expression of (PKB)b increased, with differentiation. Both basal and insulin-stimulated PI 3-kinase activity increased with differentiation. Insulin-mediated phosphorylation of PKB and ERK1/2 MAP kinase increased after differentiation. Conclusion:, Components of the insulin-signalling machinery are expressed in myoblast and myotube HSMC; however, insulin responsiveness to PKB and ERK MAP kinase phosphorylation increases with differentiation. [source]


    Sustained MAPK activation is dependent on continual NGF receptor regeneration

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2004
    Dongru Qiu
    It still remains intriguing how signal specificity is achieved when different signals are relayed by the common intracellular signal transduction pathways. A well documented example for signal specificity determination is found in rat phaeochromocytoma PC12 cells where epidermal growth factor (EGF) stimulation produces a transient mitogen-activated protein kinase (MAPK) activation and leads to cell proliferation while nerve growth factor (NGF) initiates a sustained MAPK activation and induces cell differentiation. In this simulation, we demonstrated that NGF-induced sustained MAPK activation may mainly depend on continual regeneration of NGF receptors and that the presence of a small pool of surface receptors is enough to maintain a sustained MAPK activation. On the other hand, MAPK activation is not significantly sensitive to the half-life of internalized receptors and the levels of NGF-specific MAPK phosphatase MAP kinase phosphatase-3 (MKP-3), though cytoplasmic persistence of internalized NGF-bound receptors and the MKP-3 dependent feedback control also contribute to the sustaining of MAPK activation. These results are consistent with the recent experimental evidence that persistent tyrosine receptor kinase A (TrkA) activity is necessary to maintain transcription in the differentiating PC12 cells (Chang et al. 2003) and a sustained Src kinase activity is detected in response to NGF stimulation (Gatti 2003). It is suggested that sustained or transient MAPK activation induced by different growth factor and neurotrophins, which is crucial to their signaling specificity, could be satisfactorily accounted for by their specific receptor turnover kinetics rather than by the activation of specific downstream signaling cascades. [source]


    Signal transduction pathways that function in both development and innate immunity

    DEVELOPMENTAL DYNAMICS, Issue 5 2010
    Frederick A. Partridge
    Abstract C. elegans is developing in importance as a model for innate immunity. Several signaling pathways are known to be required for immune responses to a diverse range of pathogens, including the insulin signaling, p38 MAP kinase and transforming growth factor-, pathways. These pathways also have roles during development, which can complicate the analysis of their functions in immunity. Recent studies have suggested that immunity in C. elegans is integrated across the organism by both paracrine and neuronal communication, showing the complexity of the immune system in this organism. Developmental Dynamics 239:1330,1336, 2010. © 2010 Wiley-Liss, Inc. [source]


    Phosphatidylinositol-3-OH kinase regulatory subunits are differentially expressed during development of the rat cerebellum

    DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2001
    José L. Trejo
    Abstract Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin-like growth factor I (IGF-I) most likely represents the main survival signal during neuronal differentiation. IGF-I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF-I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3-kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110, or ,) associated with one of a large family of regulatory subunits (p85,, p85,, p55,, p55,, and p50,). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55, regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55, is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF-IR. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 39,50, 2001 [source]


    Independent signaling pathways in ATP-evoked secretion of plasminogen and cytokines from microglia

    DRUG DEVELOPMENT RESEARCH, Issue 2-3 2001
    *Article first published online: 28 AUG 200, Kazuhide Inoue
    Abstract We investigated the action of ATP on the secretion of plasminogen, TNF-,, and IL-6 from microglia. ATP (10,100 ,M) stimulated the release of plasminogen from rat cultured microglia in a concentration-dependent manner with a peak response at 5,10 min after the stimulation. The release was dependent on extracellular Ca2+ and was blocked by pretreatment with oxidized ATP, a blocker of P2X7. UTP, an agonist of P2Y2, also stimulated the release of plasminogen from a subpopulation (about 20% of total cells) of cultured microglia. The release was also dependent on extracellular Ca2+, suggesting a role of stocker-operated calcium entry (SOC). ATP potently stimulated TNF-, release from 2 h after the stimulation with TNF-, mRNA expression in primary cultures of rat brain microglia. The TNF-, release was maximally elicited by 1 mM ATP and 2,- and 3,-O-(4-benzoylbenzoyl)-adenosine 5,-triphosphate (BzATP), a P2X7 selective agonist, suggesting the involvement of P2X7. This TNF-, release was correlated with a sustained Ca2+ influx. The release was inhibited by PD98059, an inhibitor of MEK1 which activates extracellular signal-regulated protein kinase (ERK), and SB203580, an inhibitor of p38 MAP kinase. However, both ERK and p38 were rapidly activated by ATP even in the absence of extracellular Ca2+. These results indicate that extracellular ATP triggers TNF-, release in rat microglia via P2X7 in a manner dependent on the sustained Ca2+ influx and via the ERK/p38 cascade independently of Ca2+ influx. ATP caused the mRNA expression and release of IL-6 in a concentration-dependent manner in MG-5. The physiological meaning of these independent release mechanisms is also discussed. Drug Dev. Res. 53:166,171, 2001. © 2001 Wiley-Liss, Inc. [source]


    Protein kinase C and extracellular signal regulated kinase are involved in cardiac hypertrophy of rats with progressive renal injury

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2 2004
    H. Takahashi
    Abstract Increased cardiovascular mortality is an unresolved problem in patients with chronic renal failure. Cardiac hypertrophy is observed in the majority of patients with chronic renal failure undergoing haemodialysis. However, the mechanisms, including signal transduction pathways, responsible for cardiac hypertrophy in renal failure remain unknown. We examined the subcellular localization of protein kinase C (PKC) isoforms and phosphorylation activities of 3 mitogen-activated protein (MAP) kinase families in hypertrophied hearts of progressive renal injury rat model by subtotal nephrectomy (SNx). We also examined the effects of a novel angiotensin II type-1 receptor antagonist, CS-866, on the PKC translocation, MAP kinase activity and cardiac hypertrophy in SNx rats. The left ventricle/body weight ratios were significantly larger in SNx rats than in sham rats at 1, 2, and 4 weeks after surgery. The translocation of PKC, and , isoforms to membranous fraction was observed in SNx rat hearts at 1, 2, and 4 weeks after surgery. Activation of extracellular signal regulated kinase (ERK) 1/2, but not p38 MAP kinase and c-Jun N-terminal kinase (JNK), was observed at 1 and 2 weeks after surgery. Angiotensin II receptor blockade with CS-866 (1 mg kg,1 day,1) prevented cardiac hypertrophy, PKC translocation and ERK1/2 activation in SNx rats without significant changes in blood pressure. These data suggest that PKC and ERK1/2 are activated by an angiotensin II receptor-mediated pathway and might play an important role in the progression of cardiac hypertrophy in renal failure. [source]


    Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2007

    Abstract Zymosan is a particulate yeast preparation that elicits high levels of IL-2 and IL-10 from dendritic cells (DC) and engages multiple innate receptors, including the Syk-coupled receptor dectin-1 and the MyD88-coupled receptor TLR2. Here, we show that induction of IL-2 and IL-10 by zymosan requires activation of ERK MAP kinase in murine DC. Surprisingly, ERK activation in response to zymosan is completely blocked in Syk-deficient DC and unaffected by MyD88 deficiency. Conversely, ERK activation in response to the TLR2 agonist Pam3Cys is completely MyD88 dependent and unaffected by Syk deficiency. The inability of TLR2 ligands in zymosan to couple to ERK may explain the Syk dependence of the IL-2 and IL-10 response in DC and emphasises the importance of Syk-coupled pattern recognition receptors such as dectin-1 in the detection of yeasts. Furthermore, the lack of receptor compensation observed here suggests that responses induced by complex innate stimuli cannot always be predicted by the signalling pathways downstream of individual receptors. [source]


    An Efficient Method for the Large-Scale Preparation of 3- O -Acetyl-11-oxo-,-boswellic Acid and Other Boswellic Acids

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 24 2003
    Johann Jauch
    Abstract 3- O -Acetyl-11-oxo-,-boswellic acid (AKBA), found in incense, is a potent inhibitor of 5-lipoxygenase, p38 and p42 MAP kinase and topoisomerases. Starting from crude extracts from incense, procedures are presented for the efficient large-scale synthesis of AKBA and other boswellic acids (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


    High extracellular [Mg2+]-induced increase in intracellular [Mg2+] and decrease in intracellular [Na+] are associated with activation of p38 MAP kinase and ERK2 in guinea-pig heart

    EXPERIMENTAL PHYSIOLOGY, Issue 12 2008
    Shang-Jin Kim
    High extracellular Mg2+ concentrations ([Mg2+]o) caused a remarkable concentration-dependent and reversible increase in intracellular Mg2+ concentrations ([Mg2+]i) in beating and quiescent guinea-pig papillary muscles, accompanied by a definite decrease in intracellular Na+ concentrations ([Na+]i). A change in 1 mm[Mg2+]o evoked a direct change in 0.0161 mm[Mg2+]i and an inverse change in 0.0263 mm[Na+]i. Imipramine completely abolished the high [Mg2+]o -induced decrease in [Na+]i and remarkably diminished the high [Mg2+]o -induced increase in [Mg2+]i in papillary muscles. High [Mg2+]o also produced a significant activation of p38 mitogen-activated protein (MAP) kinase and extracellular signal-related kinase 2 (ERK2) that was inhibited by pretreatment with imipramine. These results suggest that the high [Mg2+]o -induced increase in [Mg2+]i could be coupled with the decrease in [Na+]i, which might involve activation of the reverse mode of Na+,Mg2+ exchange, accompanied by activation of p38 MAP kinase and ERK2 in the guinea-pig heart. [source]


    Kinetic mechanism for p38 MAP kinase ,

    FEBS JOURNAL, Issue 18 2005
    A partial rapid-equilibrium random-order ternary-complex mechanism for the phosphorylation of a protein substrate
    p38 Mitogen-activated protein kinase alpha (p38 MAPK,) is a member of the MAPK family. It is activated by cellular stresses and has a number of cellular substrates whose coordinated regulation mediates inflammatory responses. In addition, it is a useful anti-inflammatory drug target that has a high specificity for Ser-Pro or Thr-Pro motifs in proteins and contains a number of transcription factors as well as protein kinases in its catalog of known substrates. Fundamental to signal transduction research is the understanding of the kinetic mechanisms of protein kinases and other protein modifying enzymes. To achieve this end, because peptides often make only a subset of the full range of interactions made by proteins, protein substrates must be utilized to fully elucidate kinetic mechanisms. We show using an untagged highly active form of p38 MAPK,, expressed and purified from Escherichia coli[Szafranska AE, Luo X & Dalby KN (2005) Anal Biochem336, 1,10) that at pH 7.5, 10 mm Mg2+ and 27 °C p38 MAPK, phosphorylates ATF2,115 through a partial rapid-equilibrium random-order ternary-complex mechanism. This mechanism is supported by a combination of steady-state substrate and inhibition kinetics, as well as microcalorimetry and published structural studies. The steady-state kinetic experiments suggest that magnesium adenosine triphosphate (MgATP), adenylyl (,,,-methylene) diphosphonic acid (MgAMP-PCP) and magnesium adenosine diphosphate (MgADP) bind p38 MAPK, with dissociation constants of KA = 360 µm, KI = 240 µm, and KI > 2000 µm, respectively. Calorimetry experiments suggest that MgAMP-PCP and MgADP bind the p38 MAPK,,ATF2,115 binary complex slightly more tightly than they do the free enzyme, with a dissociation constant of Kd , 70 µm. Interestingly, MgAMP-PCP exhibits a mixed inhibition pattern with respect to ATF2,115, whereas MgADP exhibits an uncompetitive-like pattern. This discrepancy occurs because MgADP, unlike MgAMP-PCP, binds the free enzyme weakly. Intriguingly, no inhibition by 2 mm adenine or 2 mm MgAMP was detected, suggesting that the presence of a ,-phosphate is essential for significant binding of an ATP analog to the enzyme. Surprisingly, we found that inhibition by the well-known p38 MAPK, inhibitor SB 203580 does not follow classical linear inhibition kinetics at concentrations >,100 nm, as previously suggested, demonstrating that caution must be used when interpreting kinetic experiments using this inhibitor. [source]


    Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pump

    FEBS JOURNAL, Issue 5 2004
    Robert Saunders
    Ouabain, a sodium pump (Na+/,K+ -ATPase) inhibitor, has been shown to act as a hormone and is possibly involved in the pathogenesis of hypertension. The mechanism by which ouabain may act was investigated using primary cultures of human umbilical artery endothelial cells (HUAECs), which are known to express and release the vasoconstrictive hormone endothelin (ET-1). Five minutes after application, low concentrations of ouabain induced Ca2+ oscillations and stimulated ET-1 release from endothelial cells into the medium. To investigate whether the observed effects were due to inhibition of the sodium pump, the effects of ouabain on the uptake of 86Rb+ by HUAECs were examined. Unexpectedly, ouabain concentrations below 10 nm stimulated 86Rb+ uptake by 15,20%, and in some experiments by 50%, results that are consistent with a stimulation of the pump. Within the concentration range 1,10 nm, ouabain induced a 2.5-fold stimulation (phosphorylation) of mitogen-activated protein kinase (MAP kinase). After incubation of HUAECs with ouabain for 12 h, the glycoside stimulated cell growth by 49 ± 4%, as measured by cell number, with a maximum response at 5 nm. At similar concentrations, ouabain also increased ET-1 mRNA abundance by 19.5 ± 3.1%. The results indicate that, by influencing ET-1 expression and release, ouabain may contribute to the regulation of vascular tone. The data also confirm that it is not a global inhibition of the sodium pump that is involved in the mechanism of action of this cardiac glycoside. [source]


    The P2Y1 receptor mediates ADP-induced p38 kinase-activating factor generation in human platelets

    FEBS JOURNAL, Issue 8 2000
    Carol Dangelmaier
    U46619, a thromboxane A2 mimetic, but not ADP, caused activation of p38 mitogen activated protein (MAP) kinase in aspirin-treated platelets. In nonaspirinated human platelets ADP activated p38 MAP kinase in both a time-and concentration-dependent manner, suggesting that ADP-induced p38 MAP kinase activation requires generation of thromboxane A2. However, neither a thromboxane A2/prostaglandin H2 receptor antagonist SQ29548 and a thromboxane synthase inhibitor, furegrelate, either alone or together, nor indomethacin blocked ADP-induced p38 kinase activation in nonaspirinated platelets. Other cycloxygenase products, PGE2, PGD2, and PGF2,, failed to activate p38 kinase in aspirin-treated platelets. Hence, ADP must be generating an agonist, other than thromboxane A2, via an aspirin-sensitive pathway, which is capable of activating p38 kinase. AR-C66096, a P2TAC (platelet ADP receptor coupled to inhibition of adenylate cyclase) antagonist, did not inhibit ADP-induced p38 MAP kinase activation. The P2X receptor selective agonist, ,,,-methylene ATP, failed to activate p38 MAP kinase. On the other hand, the P2Y1 receptor selective antagonist, adenosine-2,-phosphate-5,-phosphate inhibited ADP-induced p38 kinase activation in a concentration-dependent manner, indicating that the P2Y1 receptor alone mediates ADP-induced generation of the p38 kinase-activating factor. These results demonstrate that ADP causes the generation of a factor in human platelets, which can activate p38 kinase, and that this response is mediated by the P2Y1 receptor. Neither the P2TAC receptor nor the P2X1 receptor has any significant role in this response. [source]


    Protein phosphorylation pathways involved during lipopolysaccharide-induced expression of CD14 in mouse bone marrow granulocytes

    FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2000
    Thierry Pedron
    Abstract Lipopolysaccharide (LPS) of Gram-negative bacteria interacts with a CD14-independent receptor of mouse bone marrow granulocytes (BMC), and triggers in these cells the expression of CD14, an inducible type of LPS receptor (iLpsR). This particular response of BMC to LPS required the activation of protein tyrosine kinase and p38 MAP kinase. The inhibition of the LPS effect by the MEK inhibitor PD-98059 suggested that the ERK pathway was also involved. Unexpectedly, protein kinase C, myosin light chain kinase, cAMP-, cGMP-, and Ca2+/calmodulin-dependent kinases, as well as ecto-protein kinases, were not required for iLpsR expression. However, other yet unidentified serine/threonine protein kinase(s) were implied since the BMC response to LPS was markedly reduced after exposure to three inhibitors of such kinases (K-252a, H-7, and KT-5823). The atypical kinase requirements observed in this study may be due either to a novel signaling LPS receptor complex present in BMC, or to the particular events involved in CD14 biosynthesis. [source]


    Endothelial cell-specific molecule 2 (ECSM2) modulates actin remodeling and epidermal growth factor receptor signaling

    GENES TO CELLS, Issue 3 2009
    Fanxin Ma
    Endothelial cell-specific molecules (ECSMs) play a pivotal role in the pathogenesis of many angiogenesis-related diseases. Since its initial discovery, the exact function of human ECSM2 has not been defined. In this study, by database mining, we identified a number of hypothetical proteins across species exhibiting substantial sequence homology to the human ECSM2. We showed that ECSM2 is preferentially expressed in endothelial cells and blood vessels. Their characteristic structures and unique expression patterns suggest that ECSM2 is an evolutionarily conserved gene and may have important functions. We further explored the potential roles of human ECSM2 at the molecular and cellular level. Using a reconstitution mammalian cell system, we demonstrated that ECSM2 mainly resides at the cell membrane, is critically involved in cell-shape changes and actin cytoskeletal rearrangement, and suppresses tyrosine phosphorylation signaling. More importantly, we uncovered that ECSM2 can cross-talk with epidermal growth factor receptor (EGFR) to attenuate the EGF-induced cell migration, possibly via inhibiting the Shc-Ras-ERK (MAP kinase) pathway. Given the importance of growth factor and receptor tyrosine kinase-mediated signaling and cell migration in angiogenesis-related diseases, our findings regarding the inhibitory effects of ECSM2 on EGF-mediated signaling and cell motility may have important therapeutic implications. [source]


    Down-regulation of the PI3-kinase/Akt pathway by ERK MAP kinase in growth factor signaling

    GENES TO CELLS, Issue 9 2008
    Hideko Hayashi
    The ERK MAP kinase and PI3-kinase/Akt pathways are major intracellular signaling modules, which are known to regulate diverse cellular processes including cell proliferation, survival and malignant transformation. However, it has not been fully understood how these two pathways interact with each other. Here, we demonstrate that inhibition of the ERK pathway by the MEK inhibitor U0126 or PD98059 significantly potentiates EGF- and FGF-induced Akt phosphorylation at both Thr308 and Ser473. We also show that hyperactivation of the ERK pathway greatly attenuates EGF- and FGF-induced Akt phosphorylation. Furthermore, the enhanced Akt phosphorylation induced by U0126 is inhibited by the PI3-kinase inhibitor LY294002, and is accompanied by the up-regulation of Ras activity. These results suggest that the ERK pathway inhibition enhances Akt phosphorylation through the Ras/PI3-kinase pathway. Thus, our results demonstrate that the ERK pathway negatively modulates the PI3-kinase/Akt pathway in response to growth factor stimulation. [source]


    ERK5 is involved in TCR-induced apoptosis through the modification of Nur77

    GENES TO CELLS, Issue 5 2008
    Yasushi Fujii
    Nur77 is a nuclear orphan steroid receptor that has been implicated in negative selection when immature T cells are strongly activated through interaction with self peptide-MHC complexes. The expression of Nur77 in thymocytes and T cell lines leads to apoptosis in a manner dependent on its transcriptional activity. It is well established that Nur77 function is negatively regulated by post-translational modification. Here we demonstrate that the MAPK-induced phosphorylation of Nur77 during T cell activation plays a critical role in the induction of apoptosis. Upon T cell receptor (TCR) stimulation, ERK5 (also known as big MAP kinase 1, BMK1), a member of the MAPK family, phosphorylates Nur77, leading to its transcriptional activation. In contrast, the activation of the ERK2 signaling pathway failed to activate Nur77 although ERK2 is also able to phosphorylate Nur77. Furthermore, the blockade of ERK5 signaling pathway suppressed TCR-induced cell death. These results indicate that ERK5 regulates Nur77 function through its phosphorylation. [source]


    Regulation of mitotic function of Chk1 through phosphorylation at novel sites by cyclin-dependent kinase 1 (Cdk1)

    GENES TO CELLS, Issue 5 2006
    Takashi Shiromizu
    Chk1 is phosphorylated at Ser317 and Ser345 by ATR in response to stalled replication and genotoxic stresses. This Chk1 activation is thought to play critical roles in the prevention of premature mitosis. However, the behavior of Chk1 in mitosis remains largely unknown. Here we reported that Chk1 was phosphorylated in mitosis. The reduction of this phosphorylation was observed at the metaphase-anaphase transition. Two-dimensional phosphopeptide mapping revealed that Chk1 phosphorylation sites in vivo were completely overlapped with the in vitro sites by cyclin-dependent protein kinase (Cdk) 1 or by p38 MAP kinase. Ser286 and Ser301 were identified as novel phosphorylation sites on Chk1. Treatment with Cdk inhibitor butyrolactone I induced the reduction of Chk1-S301 phosphorylation, although treatment with p38-specific inhibitor SB203580 or siRNA did not. In addition, ionizing radiation (IR) or ultraviolet (UV) light did not induce Chk1 phosphorylation at Ser317 and Ser345 in nocodazole-arrested mitotic cells. These observations imply the regulation of mitotic Chk1 function through Chk1 phosphorylation at novel sites by Cdk1. [source]


    Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway

    GENES TO CELLS, Issue 6 2005
    Takaaki Hirotsu
    The molecular machinery that mediates odor adaptation in the olfactory neurons is well documented in various animal species. However, types of adaptation that depend on neural circuits are mostly unexplored. We report here that the Ras-MAPK pathway is essential for such a type of odor adaptation, called early adaptation, in C. elegans. Early adaptation requires a pair of AIY interneurons, which receive synaptic inputs from olfactory neurons. Mutants of the Ras-MAPK pathway show defects in early adaptation. Continued exposure to an odorant causes activation of MAP kinase not only in the olfactory neurons, but also in the AIY interneurons. While activity of the Ras-MAPK pathway in the olfactory neurons is important for odor perception, its activity in the AIY interneurons is important for odor adaptation. Our results thus reveal a dual role of the Ras-MAPK pathway in sensory processing in the nervous system of C. elegans. [source]


    Molecular mechanism of a cross-talk between oestrogen and growth factor signalling pathways

    GENES TO CELLS, Issue 8 2000
    Shigeaki Kato
    Oestrogen (E2) plays significant roles in variety of biological events such as the development and maintenance of female reproductive organs, bone and lipid metabolisms. More recently, from study of knock-out mice deficient in oestrogen receptor (ER) , and ER, it turned out that normal spermatogenesis requires the E2 actions. Furthermore, this female steroid hormone is also well known to be deeply involved in many pathophysiological events such as osteoporosis and cancer development in female reproductive organs. It is particularly well known that most breast cancer is dependent on E2 in its development. Such E2 actions are thought to be mediated through two subtypes of ERs. Growth factors have been shown to synergize in this E2 signalling pathway, although the actual molecular mechanism largely remains unknown. Recently, we found that the MAP kinase activated by growth factors phosphorylates the Ser118 residue of the human ER, A/B domain and this phosphorylation potentiates the N-terminal transactivation function (AF-1) of human ER,, indicating the possible molecular mechanism of a novel cross-talk between E2 and growth factor signalling pathways. More recently, we have identified a coactivator associating with the hER, AF-1 in a MAPK-mediated phosphorylation-dependent manner. In this review, the molecular mechanism of this cross-talk is discussed in terms of the transactivation function of ERs, and their coactivators. [source]


    Mutational activation of the MAP3K8 protooncogene in lung cancer

    GENES, CHROMOSOMES AND CANCER, Issue 2 2004
    Adam Michael Clark
    The MAP3K8 protooncogene (Cot/Tpl-2) activates the MAP kinase, SAP kinase, and NF-,B signaling pathways. MAP3K8 mutations occur in the rat homologue, but activating mutations have yet to be identified in primary human tumors. We have identified MAP3K8 as a transforming gene from a human lung adenocarcinoma and characterized a 3, end mutation in the cDNA. In addition, we confirmed that the mutation occurs in the original lung tumor, and we screened a series of lung cancer cell lines to determine whether the MAP3K8 mutation is a common occurrence in lung tumorigenesis. The oncogene was isolated and identified with the NIH3T3 nude mouse tumorigenicity assay and cDNA library screening. The gene was analyzed by polymerase chain reaction (PCR), single-strand conformational polymorphism (SSCP), and 3,RACE for mutations. The mutation was localized to MAP3K8 exon 8 and confirmed in the primary tumor DNA. Both wild-type and mutant MAP3K8 cDNAs transformed NIH3T3 cells, but the transforming activity of the mutant was much greater than that of the wild type. PCR-SSCP screening of cell line cDNAs identified one silent polymorphism in cell line SK-LU-1. Although we were unable to find additional activating mutations, these data support a role for MAP3K8 activity in cellular transformation, but suggest that mutational activation of the gene is a rare event in lung cancer. © 2004 Wiley-Liss, Inc. [source]


    Replication of Theiler's virus requires NF-,B-activation: Higher viral replication and spreading in astrocytes from susceptible mice

    GLIA, Issue 9 2008
    Min Hyung Kang
    Abstract To investigate viral replication and cell,cell spreading in astrocytes, recombinant Theiler's murine encephalomyelitis virus (TMEV) expressing green fluorescent protein (GFP) during the replication was generated. GFP and TMEV proteins were processed correctly in infected cells and production of viral proteins could be tracked by fluorescent microscopy. Viral replication of both wild-type TMEV and GFP-TMEV was dependent on the activation of NF-,B and partially MAP kinase, based on chemical inhibition studies. Viral replication was significantly reduced in primary astrocytes from NF-,B1 (p105)-deficient mice compared with that from wild-type control mice, whereas cytokine production was enhanced. These results suggest an association of canonical NF-,B subunits in viral replication, but not cytokine production. Viral replication was also suppressed in both IKK, and IKK,-deficient mouse embryonic fibroblasts (MEFs), compared with that in wild-type MEF. However, the inhibition was significantly greater in IKK,-deficient MEF, suggesting that IKK, plays a stronger role in supporting viral replication. Interestingly, viral replication and spreading in primary astrocytes from susceptible SJL/J mice were several-fold higher than those in astrocytes from resistant C57BL/6 mice, suggesting that higher viral replication levels in astrocytes may also contribute to the viral persistence in the central nervous system (CNS) of susceptible SJL/J mice. A relatively higher level of activated NF-,B was found in the nuclei of virus-infected SJL astrocytes compared with C57BL/6 astrocytes suggest that the NF-,B activation level affects on viral replication. © 2008 Wiley-Liss, Inc. [source]


    IFN-,-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes

    GLIA, Issue 3 2007
    Hyun Jin Cho
    Abstract ,-Site APP cleaving enzyme 1 (BACE1) is an essential enzyme for the production of , amyloid. Since we found that injection of interferon-, (IFN-,) into young mouse brains increased BACE1 expression in astrocytes, we investigated molecular mechanisms underlying this process by cloning a putative BACE1 promoter. BACE1 promoter activity was differentially regulated by IFN-, in a region specific manner and down-regulated by an inhibitor of Janus kinase 2 (JAK2). A dominant negative mutant of signal transducer and activator of transcription 1 (STAT1) expression suppressed BACE1 promoter activity, and this was rescued by transfecting wild type STAT1. Electrophoretic mobility shift assay and promoter activity assays indicated that STAT1 binds directly to the putative STAT1 binding sequence of BACE1 promoter. Because IFN-, treatment induced STAT1 phosphorylation, we examined whether the expression of a suppressor of cytokine signaling (SOCS), negative regulator of JAK2, suppresses BACE1 promoter activity. The results show that SOCS1 or SOCS3 expression suppressed BACE1 promoter by blocking phosphorylation of Tyr701 residue in STAT1. Also, because IFN-, treatment specifically potentiated extracellular signal regulated MAP kinase (ERK) 1/2 activation, pretreatment of mitogen-activated or extracellular signal-regulated protein kinase (MEK) inhibitor, PD98059, significantly attenuated IFN-,-induced BACE1 promoter activity and protein expression through blocking phosphorylation of Ser727 residue in STAT1, suggesting that ERK1/2 is associated with IFN-,-induced STAT1 signaling cascade. Taken together, our results suggest that IFN-, activates JAK2 and ERK1/2 and then phosphorylated STAT1 binds to the putative STAT1 binding sequences in BACE1 promoter region to modulate BACE1 protein expression in astrocytes. © 2006 Wiley-Liss, Inc. [source]


    The TLR3 ligand polyI:C downregulates connexin 43 expression and function in astrocytes by a mechanism involving the NF-,B and PI3 kinase pathways

    GLIA, Issue 8 2006
    Yongmei Zhao
    Abstract Toll-like receptor 3 (TLR3) is a component of the innate immune response that responds to dsRNA viruses and virus replication intermediates. In this study we show that activation of astrocytes with the dsRNA mimetic polyinosinic-cytidylic acid (pI:C) results in loss of expression of connexin43 (Cx43) mRNA and protein while upregulating the expression of the ionotropic P2 receptor P2X4R. Analysis of the signaling pathways involved failed to demonstrate a role for the p38 MAP kinase, ERK, or JNK signaling pathways whereas an inhibitor of the PI3 kinase/Akt pathway effectively blocked the action of pI:C. Using adenoviral vectors containing a super-repressor of NF-,B (NF-,B SR) construct or a dominant negative interferon regulatory factor 3 (dnIRF3) construct showed that inhibition of both transcription factors also blocked the effects of pI:C. To explore the functional consequences of pI:C activation we used a pore-forming assay for P2X4R activity and a scrape loading assay for gap junction intercellular communication (GJIC). No pore-forming activity consistent with functional P2X4R expression was detected in either control or activated astrocytes. In contrast, robust Lucifer yellow transfer indicative of GJIC was detected in resting cells that was lost following pI:C activation. The dnIRF3 construct failed to restore GJIC whereas the NF-,B SR or the NF-,B inhibitor BAY11-7082 and the PI3K inhibitor LY294002 all significantly reversed the effect of pI:C on GJ connectivity. We conclude that activation of the innate immune response in astrocytes is associated with functional loss of GJIC through a pathway involving NF-,B and PI3 kinase. © 2006 Wiley-Liss, Inc. [source]


    Role of the Rap1 GTPase in astrocyte growth regulation

    GLIA, Issue 3 2003
    Anthony J. Apicelli
    Abstract Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome in which affected individuals develop nervous system abnormalities that might reflect astrocyte dysfunction. The TSC2 gene product, tuberin, encodes a GTPase-activating protein (GAP) domain, which regulates the activity of Rap1 in vitro. To determine whether dysregulated Rap1, resulting from TSC2 inactivation, leads to increased astrocyte proliferation in vivo, we generated transgenic mice expressing activated Rap1G12V specifically in astrocytes. We observed no statistically significant difference in the number of astrocytes between wild-type and GFAP-Rap1G12V littermates in vivo; however, during log-phase growth, we observed a 25% increase in GFAP-Rap1G12V astrocyte doubling times compared to wild-type controls. This decreased proliferation was associated with delayed MAP kinase, but not AKT, activation. Lastly, to determine whether constitutive Rap1 activation could reverse the increased astrocyte proliferation observed in transgenic mice expressing oncogenic RasG12V, we generated transgenic mice expressing both RasG12V and Rap1G12V in astrocytes. These double transgenic mice showed a striking reversion of the RasG12V astrocyte growth phenotype. Collectively, these results argue that the tumor suppressor properties of tuberin are unlikely to be related to Rap1 inactivation and that Rap1 inhibits mitogenic Ras pathway signaling in astrocytes. GLIA 42:225,234, 2003. © 2003 Wiley-Liss, Inc. [source]