Map Distances (map + distance)

Distribution by Scientific Domains


Selected Abstracts


RAPID EVOLUTIONARY ESCAPE BY LARGE POPULATIONS FROM LOCAL FITNESS PEAKS IS LIKELY IN NATURE

EVOLUTION, Issue 6 2005
Daniel M. Weinreich
Abstract Fitness interactions between loci in the genome, or epistasis, can result in mutations that are individually deleterious but jointly beneficial. Such epistasis gives rise to multiple peaks on the genotypic fitness landscape. The problem of evolutionary escape from such local peaks has been a central problem of evolutionary genetics for at least 75 years. Much attention has focused on models of small populations, in which the sequential fixation of valley genotypes carrying individually deleterious mutations operates most quickly owing to genetic drift. However, valley genotypes can also be subject to mutation while transiently segregating, giving rise to copies of the high fitness escape genotype carrying the jointly beneficial mutations. In the absence of genetic recombination, these mutations may then fix simultaneously. The time for this process declines sharply with increasing population size, and it eventually comes to dominate evolutionary behavior. Here we develop an analytic expression for Ncrit, the critical population size that defines the boundary between these regimes, which shows that both are likely to operate in nature. Frequent recombination may disrupt high-fitness escape genotypes produced in populations larger than Ncrit before they reach fixation, defining a third regime whose rate again slows with increasing population size. We develop a novel expression for this critical recombination rate, which shows that in large populations the simultaneous fixation of mutations that are beneficial only jointly is unlikely to be disrupted by genetic recombination if their map distance is on the order of the size of single genes. Thus, counterintuitively, mass selection alone offers a biologically realistic resolution to the problem of evolutionary escape from local fitness peaks in natural populations. [source]


Using sex-averaged genetic maps in multipoint linkage analysis when identity-by-descent status is incompletely known

GENETIC EPIDEMIOLOGY, Issue 5 2006
Tasha E. Fingerlin
Abstract The ratio of male and female genetic map distances varies dramatically across the human genome. Despite these sex differences in genetic map distances, most multipoint linkage analyses use sex-averaged genetic maps. We investigated the impact of using a sex-averaged genetic map instead of sex-specific maps for multipoint linkage analysis of affected sibling pairs when identity-by-descent states are incompletely known due to missing parental genotypes and incomplete marker heterozygosity. If either all or no parental genotypes were available, for intermarker distances of 10, 5, and 1,cM, we found no important differences in the expected maximum lod score (EMLOD) or location estimates of the disease locus between analyses that used the sex-averaged map and those that used the true sex-specific maps for female:male genetic map distance ratios 1:10 and 10:1. However, when genotypes for only one parent were available and the recombination rate was higher in females, the EMLOD using the sex-averaged map was inflated compared to the sex-specific map analysis if only mothers were genotyped and deflated if only fathers were genotyped. The inflation of the lod score when only mothers were genotyped led to markedly increased false-positive rates in some cases. The opposite was true when the recombination rate was higher in males; the EMLOD was inflated if only fathers were genotyped, and deflated if only mothers were genotyped. While the effects of missing parental genotypes were mitigated for less extreme cases of missingness, our results suggest that when possible, sex-specific maps should be used in linkage analyses. Genet. Epidemiol. 2006. © 2006 Wiley-Liss, Inc. [source]


Using linked markers to infer the age of a mutation

HUMAN MUTATION, Issue 2 2001
Bruce Rannala
Abstract Advances in sequencing and genotyping technologies over the last decade have enabled geneticists to easily characterize genetic variation at the nucleotide level. Hundreds of genes harboring mutations associated with genetic disease have now been identified by positional cloning. Using variation at closely linked genetic markers, it is possible to predict the times in the past at which particular mutations arose. Such studies suggest that many of the rare mutations underlying human genetic disorders are relatively young. Studies of variation at genetic markers linked to particular mutations can provide insights into human geographic history, and historical patterns of natural selection and disease, that are not available from other sources. We review two approaches for estimating allele age using variation at linked genetic markers. A phylogenetic approach aims to reconstruct the gene tree underlying a sample of chromosomes carrying a particular mutation, obtaining a "direct" estimate of allele age from the age of the root of this tree. A population genetic approach relies on models of demography, mutation, and/or recombination to estimate allele age without explicitly reconstructing the gene tree. Phylogenetic methods are best suited for studies of ancient mutations, while population genetic methods are better suited for studies of recent mutations. Methods that rely on recombination to infer the ages of alleles can be fine-tuned by choosing linked markers at optimal map distances to maximize the information available about allele age. A limitation of methods that rely on recombination is the frequent lack of a fine-scale linkage map. Maximum likelihood and Bayesian methods for estimating allele age that rely on intensive numerical computation are described, as well as "composite" likelihood and moment-based methods that lead to simple estimators. The former provide more accurate estimates (particularly for large samples of chromosomes) and should be employed if computationally practical. Hum Mutat 18:87,100, 2001. © 2001 Wiley-Liss, Inc. [source]


Patterns of vegetative growth and gene flow in Rhizopogon vinicolor and R. vesiculosus (Boletales, Basidiomycota)

MOLECULAR ECOLOGY, Issue 8 2005
ANNETTE M. KRETZER
Abstract We have collected sporocarps and tuberculate ectomycorrhizae of both Rhizopogon vinicolor and Rhizopogon vesiculosus from three 50 × 100 m plots located at Mary's Peak in the Oregon Coast Range (USA); linear map distances between plots ranged from c. 1 km to c. 5.5 km. Six and seven previously developed microsatellite markers were used to map the approximate size and distribution of R. vinicolor and R. vesiculosus genets, respectively. Genetic structure within plots was analysed using spatial autocorrelation analyses. No significant clustering of similar genotypes was detected in either species when redundant samples from the same genets were culled from the data sets. In contrast, strong clustering was detected in R. vesiculosus when all samples were analysed, but not in R. vinicolor. These results demonstrate that isolation by distance does not occur in either species at the intraplot sampling scale and that clonal propagation (vegetative growth) is significantly more prevalent in R. vesiculosus than in R. vinicolor. Significant genetic differentiation was detected between some of the plots and appeared greater in the more clonal species R. vesiculosus with ,ST values ranging from 0.010 to 0.078*** than in R. vinicolor with ,ST values ranging from ,0.002 to 0.022** (*P < 0.05, **P < 0.01, ***P < 0.001). When tested against the null hypothesis of no relationship between individuals, parentage analysis detected seven likely parent/offspring pairs in R. vinicolor and four in R. vesiculosus (, = 0.001). Of these 11 possible parent/offspring pairs, only two R. vinicolor pairs were still supported as parent/offspring when tested against the alternative hypothesis of being full siblings (, = 0.05). In the latter two cases, parent and offspring were located at approximately 45 m and 28 m from each other. Challenges to parentage analysis in ectomycorrhizal fungi are discussed. [source]


A linkage map of common carp (Cyprinus carpio) based on AFLP and microsatellite markers

ANIMAL GENETICS, Issue 2 2010
L. Cheng
Summary Common carp (Cyprinus carpio) is an important fish for aquaculture, but genomics of this species is still in its infancy. In this study, a linkage map of common carp based on Amplified Fragment Length Polymorphism (AFLP) and microsatellite (SSR) markers has been generated using gynogenetic haploids. Of 926 markers genotyped, 151 (149 AFLPs, two SSRs) were distorted and eliminated from the linkage analyses. A total of 699 AFLP and 20 microsatellite (SSR) markers were assigned to the map, which comprised 64 linkage groups and covered 5506.9 cM Kosambi, with an average interval distance of 7.66 cM Kosambi. The normality tests on interval map distances showed a non-normal marker distribution. Visual inspection of the map distance distribution histogram showed a cluster of interval map distances on the left side of the chart, which suggested the occurrence of AFLP marker clusters. On the other hand, the lack of an obvious cluster on the right side showed that there were a few big gaps which need more markers to bridge. The correlation analysis showed a highly significant relatedness between the length of linkage group and the number of markers, indicating that the AFLP markers in this map were randomly distributed among different linkage groups. This study is helpful for research into the common carp genome and for further studies of genetics and marker-assisted breeding in this species. [source]