Many Vertebrates (many + vertebrate)

Distribution by Scientific Domains

Terms modified by Many Vertebrates

  • many vertebrate species

  • Selected Abstracts


    Proximate mechanisms of variation in the carotenoid-based plumage coloration of nestling great tits (Parus major L.)

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2003
    B. Tschirren
    Abstract Many vertebrates use carotenoid-based signals in social or sexual interactions. Honest signalling via carotenoids implies some limitation of carotenoid-based colour expression among phenotypes in the wild, and at least five limiting proximate mechanisms have been hypothesized. Limitation may arise by carotenoid-availability, genetic constraints, body condition, parasites, or detrimental effects of carotenoids. An understanding of the relative importance of the five mechanisms is relevant in the context of natural and sexual selection acting on signal evolution. In an experimental field study with carotenoid supplementation, simultaneous cross-fostering, manipulation of brood size and ectoparasite load, we investigated the relative importance of these mechanisms for the variation in carotenoid-based coloration of nestling great tits (Parus major). Carotenoid-based plumage coloration was significantly related to genetic origin of nestlings, and was enhanced both in carotenoid-supplemented nestlings, and nestlings raised in reduced broods. We found a tendency for ectoparasite-induced limitation of colour expression and no evidence for detrimental effects of carotenoids on growth pattern, mortality and recruitment of nestlings to the local breeding population. Thus, three of the five proposed mechanisms can generate individual variation in the expression of carotenoid-based plumage coloration in the wild and thus could maintain honesty in a trait potentially used for signalling of individual quality. [source]


    Adult neurogenesis in the crayfish brain: Proliferation, migration, and possible origin of precursor cells

    DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2009
    Yi Zhang
    Abstract The birth of new neurons and their incorporation into functional circuits in the adult brain is a characteristic of many vertebrate and invertebrate organisms, including decapod crustaceans. Precursor cells maintaining life-long proliferation in the brains of crayfish (Procambarus clarkii, Cherax destructor) and clawed lobsters (Homarus americanus) reside within a specialized niche on the ventral surface of the brain; their daughters migrate to two proliferation zones along a stream formed by processes of the niche precursors. Here they divide again, finally producing interneurons in the olfactory pathway. The present studies in P. clarkii explore (1) differential proliferative activity among the niche precursor cells with growth and aging, (2) morphological characteristics of cells in the niche and migratory streams, and (3) aspects of the cell cycle in this lineage. Morphologically symmetrical divisions of neuronal precursor cells were observed in the niche near where the migratory streams emerge, as well as in the streams and proliferation zones. The nuclei of migrating cells elongate and undergo shape changes consistent with nucleokinetic movement. LIS1, a highly conserved dynein-binding protein, is expressed in cells in the migratory stream and neurogenic niche, implicating this protein in the translocation of crustacean brain neuronal precursor cells. Symmetrical divisions of the niche precursors and migration of both daughters raised the question of how the niche precursor pool is replenished. We present here preliminary evidence for an association between vascular cells and the niche precursors, which may relate to the life-long growth and maintenance of the crustacean neurogenic niche. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source]


    Androgen receptor gene expression in the developing and adult zebrafish brain

    DEVELOPMENTAL DYNAMICS, Issue 10 2008
    Daniel A. Gorelick
    Abstract Androgens play a central role in the regulation of male sexual differentiation and behavior in many vertebrates, including zebrafish. Their signaling is mediated by activation of the androgen receptor. A single androgen receptor (ar) gene was recently identified in zebrafish, which encodes a protein that binds androgens in vitro. However, the tissue-specific expression pattern of this receptor in vivo has not been described. Using whole-mount RNA in situ hybridization, we characterized expression of the ar gene in developing zebrafish and in the adult brain. In embryos, transcripts were found in the presumptive pronephros and in olfactory placodes. By 3,5 days postfertilization, ar transcripts were also detected in the pineal organ anlage and the retina. In the adult brain, ar was expressed in discrete regions of the telencephalon, in the preoptic area, and throughout the periventricular hypothalamus, regions previously implicated in the regulation of sexually dimorphic behaviors in mammals. Developmental Dynamics 237:2987,2995, 2008. © 2008 Wiley-Liss, Inc. [source]


    Multiple paternity in reptiles: patterns and processes

    MOLECULAR ECOLOGY, Issue 11 2008
    TOBIAS ULLER
    Abstract The evolution of female promiscuity poses an intriguing problem as benefits of mating with multiple males often have to arise via indirect, genetic, effects. Studies on birds have documented that multiple paternity is common in natural populations but strong evidence for selection via female benefits is lacking. In an attempt to evaluate the evidence more broadly, we review studies of multiple paternity in natural populations of all major groups of nonavian reptiles. Multiple paternity has been documented in all species investigated so far and commonly exists in over 50% of clutches, with particularly high levels in snakes and lizards. Marine turtles and lizards with prolonged pair-bonding have relatively low levels of multiple paternity but levels are nevertheless higher than in many vertebrates with parental care. There is no evidence that high levels of polyandry are driven by direct benefits to females and the evidence that multiple paternity arises from indirect genetic benefits is weak. Instead, we argue that the most parsimonious explanation for patterns of multiple paternity is that it represents the combined effect of mate-encounter frequency and conflict over mating rates between males and females driven by large male benefits and relatively small female costs, with only weak selection via indirect benefits. A crucial step for researchers is to move from correlative approaches to experimental tests of assumptions and predictions of theory under natural settings, using a combination of molecular techniques and behavioural observations. [source]


    Hybridization between mtDNA-defined phylogeographic lineages of black ratsnakes (Pantherophis sp.)

    MOLECULAR ECOLOGY, Issue 12 2006
    H. LISLE GIBBS
    Abstract Phylogeographic analyses using mitochondrial DNA (mtDNA) have revealed many examples of apparently deep historical subdivisions (,phylogroups') within many vertebrates. It remains unclear whether these phylogroups represent independently evolving, adaptively differentiated lineages or groups that show little functional differentiation and, hence, will merge on contact. Here, we use mtDNA sequence data to evaluate the phylogeographic relationships between two of the northernmost populations of black ratsnakes (Pantherophis obsoletus complex) in Ontario, Canada and previously analysed populations in the United States. We then use population-level analyses to evaluate the level of adaptive divergence between previously established mtDNA phylogroups. Phylogenetic analyses show that southern Ontario snakes have mtDNA haplotypes that fall within the Central mtDNA phylogroup, as designated by Burbrink et al. (2000). In contrast, snakes in eastern Ontario carry either Central or Eastern-specific haplotypes. Within the hybrid region, we found highly variable frequencies of mtDNA haplotypes among isolated sub-populations, no association between variation in cytonuclear (mtDNA) and nuclear (microsatellite DNA) markers, no difference in survival or reproductive success among snakes with different mtDNA haplotypes, and no effect of mate similarity in mtDNA on female clutch size. These results argue that the Eastern and Central phylogroups have merged in this region, likely due to a lack of adaptive differentiation between individuals in each lineage. Hence, in these snakes, phylogeographic structure in mtDNA is more a reflection of historical isolation rather than adaptive divergence. The observed reticulation between lineages and lack of evidence for hybrid disgenesis also bears on the classification of these lineages as distinct species. [source]