Home About us Contact | |||
Many Streams (many + stream)
Selected AbstractsFactors affecting habitat selection by a small spawning charr population, bull trout, Salvelinus confluentus: implications for recovery of an endangered speciesFISHERIES MANAGEMENT & ECOLOGY, Issue 1 2004R. C. Wissmar Abstract Bull trout, Salvelinus confluentus (Suckley), populations are declining in many streams of North America and are listed under the Endangered Species Act in the United States. Many small populations are isolated in fragmented habitats where spawning conditions and success are not well understood. Factors affecting habitats selected for redds by spawning bull trout and redd habitat characteristics within Gold Creek, a headwater stream in the Yakima River within the Columbia River basin, Washington State, USA, were evaluated. Most spawning (>80% of the redds) occurred in upstream habitats after dewatering of downstream channels isolated fish. Habitats were selected or avoided in proportions different to their availability. For example, most bull trout selected pools and glides and avoided riffles despite the latter being more readily available. Although preferences suggest influences of prolonged fish entrapment, site fidelity could be important. A habitat with redds commonly contained abundant cover, gravel substratum and higher stream flows. The major factors influencing habitat selection by spawning fish and their persistence in streams of the Yakima and Columbia River regions include entrapment of fish by dewatering of channels and geographical isolation by dams. The goal of the US Government's recovery plan is ,to ensure the long-term persistence of self-sustaining bull trout populations'. Recovery plans linked to provisions for protecting and conserving bull trout populations and their habitats were recommended. Landscape approaches are needed that provide networks of refuge habitats and greater connectivity between populations. Concurrent recovery efforts are encouraged to focus on protecting small populations and minimizing dangers of hybridization. [source] Resource quality and stoichiometric constraints on stream ecosystem functioningFRESHWATER BIOLOGY, Issue 5 2009SALLY HLADYZ Summary 1. Resource quality and stoichiometric imbalances in carbon : nutrient ratios between consumers and resources can influence key ecosystem processes. In many streams, this has important implications for food webs that are based largely upon the utilization of terrestrial leaf-litter, which varies widely among litter types in its value as a food source for detritivores and as a substrate for microbial decomposers. 2. We measured breakdown rates and macroinvertebrate colonization of leaf-litter from a range of native and exotic plants of differing resource quality and palatability to consumers [e.g. carbon : nitrogen : phosphorus (C : N : P) ratios, lignin and cellulose content], in a field experiment. We also measured C : N : P ratios of the principal leaf-shredding invertebrates, which revealed strong stoichiometric imbalances across trophic levels: C : N and C : P ratios typically differed by at least one order of magnitude between consumers and resources, whereas N : P imbalances were less marked. Application of the threshold elemental ratio approach, which integrates animal bioenergetics and body elemental composition in examining nutrient deficiency between consumers and resources, revealed less marked C : P imbalances than those based on the simpler arithmetic differences described above. 3. Litter breakdown rates declined as nutrient imbalances widened and resource quality fell, but they were independent of whether resources were exotic or native. The principal drivers of total, microbial and invertebrate-mediated breakdown rates were lignin : N, lignin : P and fungal biomass, respectively. However, multiple regression using orthogonal predictors yielded even more efficient models of litter breakdown, as consumers responded to more than one aspect of resource quality. For example, fungal biomass and litter C : N both influenced invertebrate-mediated breakdown. 4. Large stoichiometric imbalances and changes in resource quality are likely to have serious consequences for stream ecosystem functioning, especially when riparian zones have been invaded by exotic plant species whose chemical composition differs markedly from that of the native flora. Consequently, the magnitude and direction of change in breakdown rates and, thus, resource depletion, will be driven to a large extent by the biochemical traits (rather than taxonomic identity per se) of the resident and invading flora. [source] Can macroinvertebrate rapid bioassessment methods be used to assess river health during drought in south eastern Australian streams?FRESHWATER BIOLOGY, Issue 12 2008PETER ROSE Summary 1Despite significant concern about drought impacts in Australia, there have been no broad-scale studies of drought effects on river health. A severe and prolonged drought has been acting on many streams in south eastern Australia over the past decade. EPA Victoria has undertaken rapid bioassessment (RBA) of over 250 stream reference sites since 1990, providing an opportunity for a before-after-control-impact investigation of drought related changes to macroinvertebrate indices and water quality. This study uses data from 1990 to 2004 to critically evaluate the effectiveness of using RBA methods and indices, which were designed for assessment of human impacts, for monitoring streams during drought. 2Reference stream sites across Victoria (those with minimal anthropogenic disturbances and repeatedly sampled) were classified as being ,in drought' or ,not in drought' using the Bureau of Meteorology's rainfall deficiency definition. Four biological indices (SIGNAL, EPT, Family Richness and AUSRIVAS) were calculated for combined autumn and spring samples for edge and riffle habitats for the selected sites. 3General linear models and paired t -tests were used to detect drought related changes to index and water quality values at state-wide and bioregional scales. Changes in taxa constancy were examined to determine which taxa were sensitive to or benefited from drought conditions. Frequency of site failure against biological objectives specified in the State Environment Protection Policy (Waters of Victoria) (herein termed ,SEPP WoV') before and during drought was also examined to detect changes in a management context. 4Few significant changes in index values were detected for riffle habitat samples. Rates of failure against biological objectives were similar before and during drought for riffle samples. In contrast, edge habitat AUSRIVAS and SIGNAL scores were significantly reduced at the state-wide scale and most indices showed significant declines in the lower altitude forests, and foothills and coastal plains bioregions. 5Generally, more pollution tolerant, lentic taxa replaced sensitive and flow-requiring taxa in edge samples during drought. In contrast, there were few reductions in the taxa of riffle samples during drought. However, many pool preferring, but pollution sensitive taxa occurred more frequently in riffle areas. Hence, the riffle community began to resemble that of pools and edges. This was attributed to decreased flow and increased ,lentic' habitat opportunities in riffles. 6Detection of a drought effect was confined to the edge habitat and site failure could be assigned to drought and anthropogenic impacts, in conjunction or alone. The riffle sampling protocol was resistant to detection of drought effects as samples were only taken when sufficient water was present within this habitat. Therefore, biological changes at sites not meeting policy objectives for riffle habitats can be attributed to anthropogenic rather than drought impacts. [source] Benthic organic carbon influences denitrification in streams with high nitrate concentrationFRESHWATER BIOLOGY, Issue 7 2007CLAY P. ARANGO Summary 1. Anthropogenic activities have increased reactive nitrogen availability, and now many streams carry large nitrate loads to coastal ecosystems. Denitrification is potentially an important nitrogen sink, but few studies have investigated the influence of benthic organic carbon on denitrification in nitrate-rich streams. 2. Using the acetylene-block assay, we measured denitrification rates associated with benthic substrata having different proportions of organic matter in agricultural streams in two states in the mid-west of the U.S.A., Illinois and Michigan. 3. In Illinois, benthic organic matter varied little between seasons (5.9,7.0% of stream sediment), but nitrate concentrations were high in summer (>10 mg N L,1) and low (<0.5 mg N L,1) in autumn. Across all seasons and streams, the rate of denitrification ranged from 0.01 to 4.77 ,g N g,1 DM h,1 and was positively related to stream-water nitrate concentration. Within each stream, denitrification was positively related to benthic organic matter only when nitrate concentration exceeded published half-saturation constants. 4. In Michigan, streams had high nitrate concentrations and diverse benthic substrata which varied from 0.7 to 72.7% organic matter. Denitrification rate ranged from 0.12 to 11.06 ,g N g,1 DM h,1 and was positively related to the proportion of organic matter in each substratum. 5. Taken together, these results indicate that benthic organic carbon may play an important role in stream nitrogen cycling by stimulating denitrification when nitrate concentrations are high. [source] The importance of meiofauna to lotic ecosystem functioningFRESHWATER BIOLOGY, Issue 1 2000Christine C. Hakenkamp Summary 1Although meiofauna occur in large numbers in many streams, almost nothing is known about their functional role. 2In other systems, meiofauna influence microbial and organic matter dynamics through consumption and bioturbation. Given that these are important processes in streams, meiofauna have the potential to influence lotic function by changing the quality and availability of organic matter as well as the number and biotic activity of benthic microbes. Selective feeding by meiofauna has the potential to alter the availability of nutrients and organic carbon. 3Meiofauna generally contribute only a small amount to metazoan production and biomass in streams, although exceptions occur. Within a stream, the relative importance of meiofauna may reflect whether the temporary or permanent meiofauna dominate the meiobenthos as well as the season when samples are collected. 4We suggest stream conditions (small sediment grain size, restricted interstitial flow) under which meiofauna have the greatest likelihood of influencing stream ecosystem function. 5Important areas for future research include addressing whether meiofauna feed selectively, whether meiofauna are links or sinks for carbon in streams, and whether bioturbation by meiofauna influences stream ecosystem processes in a predictable manner. [source] An analysis of alternative conceptual models relating hyporheic exchange flow to diel fluctuations in discharge during baseflow recessionHYDROLOGICAL PROCESSES, Issue 6 2010Steven M. Wondzell Abstract Diel fluctuations in stream flow during baseflow have been observed in many streams and are typically attributed to water losses from evapotranspiration (ET). However, there is no widely transferable conceptual model that explains how ET results in diel fluctuations in streamflow at the watershed outlet. For fluctuations to occur, two factors must be present: (1) some process must generate the fluctuations and transfer them to the stream channel, and (2) fluctuations must be accumulated and transported down the stream network in such a way that they arrive at a stream gauge as a coherent signal. We have previously shown how stream flow velocity affects the transport of diel fluctuations in discharge through a stream network. Here, we examined how riparian ET and hyporheic exchange flows generate diel fluctuations in discharge. We hypothesized that ET would cause a slight drawdown of riparian aquifers during the day, slightly increasing head gradients away from the stream and slightly reducing head gradients back to the stream. Thus, slightly more water would flow into the hyporheic zone than is returned to the stream, gradually reducing stream discharge. The process would be reversed at night. Using stream-tracer experiments and riparian water-level data, we tested two hypotheses related to this conceptual model,that the amplitude (H1) and time lag (H2) of diel aquifer drawdown would be constant over the summer. Neither hypothesis was supported by our data. We conclude that the processes that link watershed ET with streams include both local- and watershed-scale effects. Conceptual models attempting to explain diel fluctuations need to include the combined effects of ET on lateral inputs and hyporheic exchange flows, the redistribution of water within riparian aquifers, and the transport of ET signals from the whole stream network to the stream gauge. Copyright © 2009 John Wiley & Sons, Ltd. [source] Anthropogenic impacts on lake and stream ecosystems, and approaches to restorationJOURNAL OF APPLIED ECOLOGY, Issue 6 2007MARTIN SØNDERGAARD Summary 1Freshwater ecosystems have long been affected by numerous types of human interventions that have a negative impact on their water quality and ecological state. Fortunately, in most western countries the input of sewage to freshwater systems has been reduced, but hydromorphological alterations, eutrophication-related turbidity and loss of biodiversity remain major problems in many parts of the world. Such impacts prevent the achievement of a high or good ecological state, as defined by the European Water Framework Directive (WFD) or other standards. 2This paper synthesizes and links the findings presented in the seven papers of this special profile, focusing on the effects of anthropogenic stressors on freshwater ecosystems and on how to maintain and restore ecological quality. The papers cover a broad range of research areas and methods, but are all centred on the relationship between dispersal barriers, the connectivity of waterways and the restoration of rivers and lakes. 3The construction of dams and reservoirs disturbs the natural functioning of many streams and rivers and shore-line development around lakes may reduce habitat complexity. New methods demonstrate how reservoirs may have a severe impact on the distribution and connectivity of fish populations, and new techniques illustrate the potential of using graph theory and connectivity models to illustrate the ecological implications. Hydromorphologically degraded rivers and streams can be restored by addition of wood debris, but ,passive' restoration via natural wood recruitment may be preferable. The most cost-effective way to restore streams may also include information campaigns to farmers on best management practices. Removal of zooplanktivorous fish often has marked positive effects on trophic structure in lakes, but there is a tendency to return to turbid conditions after 8,10 years or less unless fish removal is repeated. 4Synthesis and applications. Development of new methods, as well as derivation of more general conclusions from reviewing the effects of previous restoration efforts, are crucial to achieve progress in applied freshwater research. The papers contained in this Special Profile contribute on both counts, as well as illustrating the importance of well-designed research projects and monitoring programmes to record the effects of the interventions. Such efforts are vital if we are to improve our knowledge of freshwater systems and to elaborate the best and most cost-effective recommendations. They may also help in achieving a good ecological state or potential in water bodies by 2015, as demanded by the European WFD. [source] |