Home About us Contact | |||
Many Responses (many + response)
Selected AbstractsInvolvement of G Proteins in the Mycelial Photoresponses of Phycomyces,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2004George Tsolakis ABSTRACT Many responses of the zygomycete fungus Phycomyces blakesleeanus are mediated by blue light, e.g. the stimulation of ,-carotene synthesis (photocarotenogenesis) and the formation of fruiting bodies (photomorphogenesis). Even though both responses have been described in detail genetically and biophysically, the underlying molecular events remain unknown. Applying a pharmacological approach in developing mycelia, we investigated the possible involvement of heterotrimeric G proteins in the blue-light transduction chains of both responses. G protein agonists (guanosine triphosphate analogues, cholera toxin, pertussis toxin) mimicked in darkness the effect of blue light for both responses, except for cholera toxin, which was ineffective in increasing the ,-carotene content of dark-grown mycelia. Experiments combining the two toxins indicated that photocarotenogenesis could involve an inhibitory G protein (Gi) type, whereas photomorphogenesis may depend on a transducin (Gt type)-like heterotrimer. The determination of the carB (phytoene dehydrogenase) and chs1 (chitin synthase 1) gene expression under various conditions of exogenous challenge supports the G protein participation. The fluctuations of the time course measurements of the carB and chs1 transcripts are discussed. [source] REVIEW: Human and laboratory rodent low response to alcohol: is better consilience possible?ADDICTION BIOLOGY, Issue 2 2010John C. Crabbe ABSTRACT If people are brought into the laboratory and given alcohol, there are pronounced differences among individuals in many responses to the drug. Some participants in alcohol challenge protocols show a cluster of ,low level of responses to alcohol' determined by observing post-drinking-related changes in subjective, motor and physiological effects at a given dose level. Those individuals characterized as having low level of response (LR) to alcohol have been shown to be at increased risk for a lifetime diagnosis of alcohol dependence (AD), and this relationship between low LR and AD appears to be in part genetic. LR to alcohol is an area where achieving greater consilience between the human and the rodent phenotypes would seem to be highly likely. However, despite extensive data from both human and rodent studies, few attempts have been made to evaluate the human and animal data systematically in order to understand which aspects of LR appear to be most directly comparable across species and thus the most promising for further study. We review four general aspects of LR that could be compared between humans and laboratory animals: (1) behavioral measures of subjective intoxication; (2) body sway; (3) endocrine responses; and (4) stimulant, autonomic and electrophysiological responses. None of these aspects of LR provide completely face-valid direct comparisons across species. Nevertheless, one of the most replicated findings in humans is the low subjective response, but, as it may reflect either aversively valenced and/or positively valenced responses to alcohol as usually assessed, it is unclear which rodent responses are analogous. Stimulated heart rate appears to be consistent in animal and human studies, although at-risk subjects appear to be more rather than less sensitive to alcohol using this measure. The hormone and electrophysiological data offer strong possibilities of understanding the neurobiological mechanisms, but the rodent data in particular are rather sparse and unsystematic. Therefore, we suggest that more effort is still needed to collect data using refined measures designed to be more directly comparable in humans and animals. Additionally, the genetically mediated mechanisms underlying this endophenotype need to be characterized further across species. [source] Anorexic But Not Pyrogenic Actions of Interleukin-1 are Modulated by Central Melanocortin-3/4 Receptors in the RatJOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2001C. B. Lawrence Abstract The cytokine interleukin-1 (IL-1), which mediates many responses to infection and injury, induces anorexia and fever through direct actions in the central nervous system. The melanocortin neuropeptides, such as alpha melanocyte-stimulating hormone (,-MSH), reportedly antagonize many actions of IL-1, including fever and anorexia. However, it is unknown whether endogenous melanocortins modulate anorexia induced by IL-1. The objective of the present study was to establish the effect of endogenous melanocortins on IL-1-induced anorexia and fever in the rat. Intracerebroventricular (i.c.v.) injection of IL-1, caused a significant reduction in food intake and body weight gain, and a rise in core body temperature in conscious rats. Coadministration of the melanocortin-3/4 receptor (MC3/4-R) antagonist, SHU9119, reversed IL-1,-induced reductions in food intake and body weight, but did not affect the febrile response to IL-1,. These data suggest IL-1, may elicit its effects on food intake through the melanocortin system, predominantly via the MC3-R or MC4-R. In contrast, IL-1,-induced fever does not appear to be mediated or modulated by MC3-R or MC4-R activity. [source] Deletion of the ,7 Nicotinic Receptor Subunit Gene Results in Increased Sensitivity to Several Behavioral Effects Produced by AlcoholALCOHOLISM, Issue 3 2005Barbara J. Bowers Background: The finding that most people with alcoholism are also heavy smokers prompted several research groups to evaluate the effects of ethanol on neuronal nicotinic acetylcholine receptor (nAChR) function. Data collected in vitro indicate that physiologically relevant concentrations of ethanol inhibit the functional activation of homomeric ,7 nAChRs, which are one of the most abundant nAChR subtypes expressed in the mammalian brain. The studies outlined here used ,7 gene knockout (null mutant) mice to evaluate the potential role of ,7 nAChRs in modulating selected behavioral and physiological effects produced by ethanol. Methods: Current evidence indicates that many responses to ethanol are not genetically correlated. Therefore, the authors measured the effects of acute administration of ethanol on several behaviors that are altered by both ethanol and nicotine: two tests of locomotor activity, acoustic startle, prepulse inhibition of acoustic startle, and body temperature. Ethanol-induced durations of loss of righting reflex and ethanol elimination rates were also determined. These studies used null mutant (,7,/,) and wild-type (,7+/+) mice. Results: Relative to ,7+/+ mice, ,7,/, mice were more sensitive to the activating effects of ethanol on open-field activity, ethanol-induced hypothermia, and duration of loss of the righting response. Deletion of the ,7 gene did not influence the effects of ethanol on Y-maze crossing or rearing activities, acoustic startle, or prepulse inhibition of startle. Gene deletion did not alter ethanol metabolism. Conclusions: These results indicate that some but not all of the behavioral effects of ethanol are mediated in part by effects on nAChRs that include the ,7 subunit and may help to explain the robust association between alcohol consumption and the use of tobacco. [source] |