Many Receptors (many + receptor)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


HPV related VIN: Highly proliferative and diminished responsiveness to extracellular signals

INTERNATIONAL JOURNAL OF CANCER, Issue 4 2007
Lindy A.M. Santegoets
Abstract Vulvar intraepithelial neoplasia (VIN) is a premalignant disorder caused by human papillomaviruses. Basic knowledge about the molecular pathogenesis of VIN is sparse. Therefore, we have analyzed the gene expression profile of 9 VIN samples in comparison to 10 control samples by using genome wide Affymetrix Human U133A plus2 GeneChips. Results were validated by quantitative real-time RT-PCR analysis and immunostaining of a few representative genes (TACSTD1, CCNE2, AR and ESR1). Significance analysis of microarrays (SAM) showed that 1,497 genes were differentially expressed in VIN compared to controls. By analyzing the biological processes affected by the observed differences, we found that VIN appears to be a highly proliferative disease; many cyclins (CCNA, CCNB and CCNE) and almost all prereplication complex proteins are upregulated. Thereby, VIN does not seem to depend for its proliferation on paracrine or endocrine signals. Many receptors (for example ESR1 and AR) and ligands are downregulated. Furthermore, although VIN is not an invasive disease, the inhibition of expression of a marked number of cell,cell adhesion molecules seems to indicate development towards invasion. Upon reviewing apoptosis and angiogenesis, it was observed that these processes have not become significantly disregulated in VIN. In conclusion: although VIN is still a premalignant disease, it already displays several hallmarks of cancer. © 2007 Wiley-Liss, Inc. [source]


Circuitry of nuclear factor ,B signaling

IMMUNOLOGICAL REVIEWS, Issue 1 2006
Alexander Hoffmann
Summary:, Over the past few years, the transcription factor nuclear factor (NF)-,B and the proteins that regulate it have emerged as a signaling system of pre-eminent importance in human physiology and in an increasing number of pathologies. While NF-,B is present in all differentiated cell types, its discovery and early characterization were rooted in understanding B-cell biology. Significant research efforts over two decades have yielded a large body of literature devoted to understanding NF-,B's functioning in the immune system. NF-,B has been found to play roles in many different compartments of the immune system during differentiation of immune cells and development of lymphoid organs and during immune activation. NF-,B is the nuclear effector of signaling pathways emanating from many receptors, including those of the inflammatory tumor necrosis factor and Toll-like receptor superfamilies. With this review, we hope to provide historical context and summarize the diverse physiological functions of NF-,B in the immune system before focusing on recent advances in elucidating the molecular mechanisms that mediate cell type-specific and stimulus-specific functions of this pleiotropic signaling system. Understanding the genetic regulatory circuitry of NF-,B functionalities involves system-wide measurements, biophysical studies, and computational modeling. [source]


Putting the natural killer cell in its place

IMMUNOLOGY, Issue 1 2006
Geraldine M. O'Connor
Summary Natural killer (NK) cells were originally described as ,null' lymphocytes, but we have increasing evidence of their role in recognizing pathogen, and our knowledge of NK cell receptors continues to expand exponentially. Human NK cells have many receptors for human leucoctye antigen (HLA) class I. These killer immunoglobulin-like receptors (KIRs) and CD94/NKG2 receptors can signal in both positive and negative ways to regulate NK cell functions. The inhibitory receptors are the best characterized, but even in these cases much of their functional biology remains elusive. In this review, some recent advances in terms of the three-immunoglobulin (3Ig)-domain KIRs are discussed. Natural cytotoxicity receptors (NCRs) are among the activatory receptors found on NK cells. While pathogen ligands for these receptors have been described, endogenous ligands remain elusive. NCRs and NKG2D, a receptor for stress-induced antigens, appear to play complementary functional roles in terms of NK cell activation. More recently described on NK cells are the Toll-like receptors. In particular, these receptors of the innate immune system allow NK cells to directly sense pathogen, and their ligation on accessory cells indirectly activates NK cells through cytokine production. It is becoming clear that none of these receptor systems functions in isolation and that it is the sum of the signals (which will reflect the pathogenic situation), in addition to the cytokine milieu, that will direct NK cell activation. The resulting cytotoxicity, cytokine production and direct cell,cell regulatory interactions with other cells of the immune system, for example dendritic cells, ultimately determine the role of the NK cell in the context of an overall immune response. [source]


The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors

CANCER SCIENCE, Issue 12 2003
Keigo Nishida
The Grb2-associated binder (Gab) family adapter proteins are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a substrate for the protein tyrosine phosphatase Corkscrew. Gab proteins contain a pleckstrin homology (PH) domain and binding sites for SH2 and SH3 domains. A number of studies in multiple systems have implicated Gab in signaling via many different types of receptors, such as growth factor, cytokine, and antigen receptors, and via oncoproteins. Recent studies of Gab1 and Gab2 knockout mice have clearly indicated an important role for Gabs in vivo. Gab1-deficient mice die as embryos with multiple defects in placental, heart, skin, and muscle development. Gab2-deficient mice are viable, but have a defect in the mast cell lineages and in allergic reactions. Given the apparently central role played by Gab signaling via many receptors, delineating the precise mechanism(s) of Gab-mediated signaling is critical to understanding how cytokines, growth factors, and oncoproteins mediate a variety of biological activities: cell growth, differentiation, survival and malignant transformation. [source]