Many Properties (many + property)

Distribution by Scientific Domains


Selected Abstracts


Paralog of the formylglycine-generating enzyme , retention in the endoplasmic reticulum by canonical and noncanonical signals

FEBS JOURNAL, Issue 6 2008
Santosh Lakshmi Gande
Formylglycine-generating enzyme (FGE) catalyzes in newly synthesized sulfatases the oxidation of a specific cysteine residue to formylglycine, which is the catalytic residue required for sulfate ester hydrolysis. This post-translational modification occurs in the endoplasmic reticulum (ER), and is an essential step in the biogenesis of this enzyme family. A paralog of FGE (pFGE) also localizes to the ER. It shares many properties with FGE, but lacks formylglycine-generating activity. There is evidence that FGE and pFGE act in concert, possibly by forming complexes with sulfatases and one another. Here we show that human pFGE, but not FGE, is retained in the ER through its C - terminal tetrapeptide PGEL, a noncanonical variant of the classic KDEL ER-retention signal. Surprisingly, PGEL, although having two nonconsensus residues (PG), confers efficient ER retention when fused to a secretory protein. Inducible coexpression of pFGE at different levels in FGE-expressing cells did not significantly influence the kinetics of FGE secretion, suggesting that pFGE is not a retention factor for FGE in vivo. PGEL is accessible at the surface of the pFGE structure. It is found in 21 mammalian species with available pFGE sequences. Other species carry either canonical signals (eight mammals and 26 nonmammals) or different noncanonical variants (six mammals and six nonmammals). Among the latter, SGEL was tested and found to also confer ER retention. Although evolutionarily conserved for mammalian pFGE, the PGEL signal is found only in one further human protein entering the ER. Its consequences for KDEL receptor-mediated ER retrieval and benefit for pFGE functionality remain to be fully resolved. [source]


The Hill equation: a review of its capabilities in pharmacological modelling

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2008
Sylvain Goutelle
Abstract The Hill equation was first introduced by A.V. Hill to describe the equilibrium relationship between oxygen tension and the saturation of haemoglobin. In pharmacology, the Hill equation has been extensively used to analyse quantitative drug,receptor relationships. Many pharmacokinetic,pharmacodynamic models have used the Hill equation to describe nonlinear drug dose,response relationships. Although the Hill equation is widely used, its many properties are not all well known. This article aims at reviewing the various properties of the Hill equation. The descriptive aspects of the Hill equation, in particular mathematical and graphical properties, are examined, and related to Hill's original work. The mechanistic aspect of the Hill equation, involving a strong connection with the Guldberg and Waage law of mass action, is also described. Finally, a probabilistic view of the Hill equation is examined. Here, we provide some new calculation results, such as Fisher information and Shannon entropy, and we introduce multivariate probabilistic Hill equations. The main features and potential applications of this probabilistic approach are also discussed. Thus, within the same formalism, the Hill equation has many different properties which can be of great interest for those interested in mathematical modelling in pharmacology and biosciences. [source]


Siloxane Copolymers for Nanoimprint Lithography,

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2007
P. Choi
Abstract Presented here is the novel use of thermoplastic siloxane copolymers as nanoimprint lithography (NIL) resists for 60,nm features. Two of the most critical steps of NIL are mold release and pattern transfer through dry etching. These require that the NIL resist have low surface energy and excellent dry-etching resistance. Homopolymers traditionally used in NIL, such as polystyrene (PS) or poly(methyl methacrylate) (PMMA), generally cannot satisfy all these requirements as they exhibit polymer fracture and delamination during mold release and have poor etch resistance. A number of siloxane copolymers have been investigated for use as NIL resists, including poly(dimethylsiloxane)- block -polystyrene (PDMS- b -PS), poly(dimethylsiloxane)- graft -poly(methyl acrylate)- co -poly(isobornyl acrylate) (PDMS- g -PMA- co -PIA), and PDMS- g -PMMA. The presence of PDMS imparts the materials with many properties that are favorable for NIL, including low surface energy for easy mold release and high silicon content for chemical-etch resistance,in particular, extremely low etch rates (comparable to PDMS) in oxygen plasma, to which organic polymers are quite susceptible. These properties give improved NIL results. [source]


Zero Shrinkage of LTCC by Self-Constrained Sintering

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 5 2005
Torsten Rabe
Low shrinkage in x and y direction and low tolerances of shrinkage are an indispensable precondition for high-density component configuration. Therefore, zero shrinkage sintering technologies as pressure-assisted sintering and sacrificial tapes have been introduced in the low-temperature co-fired ceramics (LTCC) production by different manufacturers. Disadvantages of these methods are high costs of sintering equipment and an additional process step to remove the sacrificial tapes. In this article, newly developed self-constrained sintering methods are presented. The new technology, HeraLock®, delivers LTCC modules with a sintering shrinkage in x and y direction of less than 0.2% and with a shrinkage tolerance of ±0.02% without sacrificial layers and external pressure. Each tape is self-constrained by integration of a layer showing no shrinkage in the sintering temperature range of the LTCC. Large area metallization, integration of channels, cavities and passive electronic components are possible without waviness and camber. Self-constrained laminates are an alternative way to produce zero shrinkage LTCC. They consist of tapes sintering at different temperature intervals. Precondition for a successful production of a self-constrained LTCC laminate is the development of well-adapted material and tapes, respectively. This task is very challenging, because sintering range, high-temperature reactivity and thermal expansion coefficient have to be matched and each tape has to fulfill specific functions in the final component, which requires the tailoring of many properties as permittivity, dielectric loss, mechanical strength, and roughness. A self-constrained laminate is introduced in this article. It consists of inner tapes sintering at especially low-temperature range between 650°C and 720°C and outer tapes with an as-fired surface suitable for thin-film processes. [source]


When Small Is Different: Some Recent Advances in Concepts and Applications of Nanoscale Phenomena,

ADVANCED MATERIALS, Issue 5 2007
G. Hodes
Abstract Reduction in size often does more than simply make things smaller. There are many properties of materials that undergo qualitative, often sudden, changes below a certain size scale. This Report first describes some of these size-dependent properties. Following this general description, recent developments in a number of selected topics in nanoscience are covered. These topics are: luminescence from Au nanoparticles; Si (and related) nanoparticle luminescence; modification of optical absorption by surface adsorption on nanoparticles; and transistors (and some other devices) based on nanotubes and nanowires. [source]


REVIEW: Optimality models in the age of experimental evolution and genomics

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 9 2010
J. J. BULL
Abstract Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure , whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation , an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution. [source]


Effect of Chronic Stress and Mifepristone Treatment on Voltage-Dependent Ca2+ Currents in Rat Hippocampal Dentate Gyrus

JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2006
N. G. Van Gemert
Chronic unpredictable stress affects many properties in rat brain. In the dentate gyrus, among other things, increased mRNA expression of the Ca2+ channel ,1C subunit has been found after 21 days of unpredictable stress in combination with acute corticosterone application (100 nM). In the present study, we examined: (i) whether these changes in expression are accompanied by altered Ca2+ currents in rat dentate granule cells recorded on day 22 and (ii) whether treatment with the glucocorticoid receptor antagonist mifepristone during the last 4 days of the stress protocol normalises the putative stress-induced effects. Three weeks of unpredictable stress did not affect Ca2+ current amplitude in dentate granule cells under basal conditions (i.e. after incubation with vehicle solution). However, the sustained Ca2+ current component (which largely depends on the ,1C subunit) was significantly increased in amplitude after chronic stress when slices had been treated with corticosterone 1,4 h before recording. These findings suggest that dentate granule cells are exposed to an increased calcium load after exposure to an acute stressor when they have a history of chronic stress, potentially leading to increased vulnerability of the cells. The present results are in line with the molecular data on Ca2+ channel ,1C subunit expression. A significant three-way interaction between chronic stress, corticosterone application and mifepristone treatment was found, indicating that the combined effect of stress and corticosterone depends on mifepristone cotreatment. Interestingly, current density (defined as total current divided by capacitance) did not differ between the groups. This indicates that the observed changes in Ca2+ current amplitude could be attributable to changes in cell size. [source]


Styrene 4-vinylbenzocyclobutene copolymer for microelectronic applications

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2008
Ying-Hung So
Abstract Styrene and 4-vinylbenzocyclobutene (vinyl-BCB) random copolymers were prepared by free radical polymerization and studied for suitability as a dielectric material for microelectronic applications. The percentage of vinyl-BCB in the copolymer was varied from 0 to 26 mol % to optimize the physical and mechanical properties of the cured copolymer as well as the cost. Copolymer in which 22 mol % of vinyl-BCB was incorporated along with styrene produced a thermoset polymer which, after cure, did not show a Tg before decomposition at about 350 °C. The polymeric material has a very low dielectric constant, dissipation factor, and water uptake. The fracture toughness of the copolymer was improved with the addition of 20 wt % of a star-shaped polystyrene- block -polybutadiene. Blends of the poly(styrene- co -vinyl-BCB) with the thermoplastic elastomer provided material that maintained high Tg of the cured copolymer with only a slight decrease in thermal stability. The crosslinked styrenic polymer and toughened blends possess many properties that are desirable for high frequency-high speed mobile communication applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2799,2806, 2008 [source]


Statistical methods for regular monitoring data

JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 5 2005
Michael L. Stein
Summary., Meteorological and environmental data that are collected at regular time intervals on a fixed monitoring network can be usefully studied combining ideas from multiple time series and spatial statistics, particularly when there are little or no missing data. This work investigates methods for modelling such data and ways of approximating the associated likelihood functions. Models for processes on the sphere crossed with time are emphasized, especially models that are not fully symmetric in space,time. Two approaches to obtaining such models are described. The first is to consider a rotated version of fully symmetric models for which we have explicit expressions for the covariance function. The second is based on a representation of space,time covariance functions that is spectral in just the time domain and is shown to lead to natural partially nonparametric asymmetric models on the sphere crossed with time. Various models are applied to a data set of daily winds at 11 sites in Ireland over 18 years. Spectral and space,time domain diagnostic procedures are used to assess the quality of the fits. The spectral-in-time modelling approach is shown to yield a good fit to many properties of the data and can be applied in a routine fashion relative to finding elaborate parametric models that describe the space,time dependences of the data about as well. [source]


Workshop summary on physical and chemical properties of potential Earth impactors

METEORITICS & PLANETARY SCIENCE, Issue 12 2002
W. F. Huebner
The goal was to develop a roadmap for determining the physical and chemical properties of NEOs in the coming decades to meet the scientific requirements for development of Earth collision avoidance technology. We identified many properties that are desired, but four measurements are needed most critically for any potentially hazardous NEO: (1) its mass, (2) its mass distribution, (3) its material strengths, and (4) its internal structure. Global (whole-body) properties, such as material strengths and internal structure, can be determined best from the analyses of permeating waves: artificially initiated seismology and multifrequency reflection and transmission radio tomography. Seismology provides the best geophysical (material strengths) data of NEOs composed of consolidated materials while radio tomography provides the best geological data (e.g., the state of fracture) of electrically nonconducting media. Thus, the two methods are complementary: seismology is most suitable for stony and metallic asteroids, while radio tomography is most appropriate for comet nuclei and carbonaceous asteroids. The three main conclusions are (1) remote sensing for physical characterization should be increased, (2) several dedicated NEO missions should be prepared for geophysical and geological investigations, and (3) that it is prudent to develop and prove the technology to make geophysical measurements on NEOs now. [source]


The phase transition in inhomogeneous random graphs

RANDOM STRUCTURES AND ALGORITHMS, Issue 1 2007
Béla Bollobás
Abstract The "classical" random graph models, in particular G(n,p), are "homogeneous," in the sense that the degrees (for example) tend to be concentrated around a typical value. Many graphs arising in the real world do not have this property, having, for example, power-law degree distributions. Thus there has been a lot of recent interest in defining and studying "inhomogeneous" random graph models. One of the most studied properties of these new models is their "robustness", or, equivalently, the "phase transition" as an edge density parameter is varied. For G(n,p), p = c/n, the phase transition at c = 1 has been a central topic in the study of random graphs for well over 40 years. Many of the new inhomogeneous models are rather complicated; although there are exceptions, in most cases precise questions such as determining exactly the critical point of the phase transition are approachable only when there is independence between the edges. Fortunately, some models studied have this property already, and others can be approximated by models with independence. Here we introduce a very general model of an inhomogeneous random graph with (conditional) independence between the edges, which scales so that the number of edges is linear in the number of vertices. This scaling corresponds to the p = c/n scaling for G(n,p) used to study the phase transition; also, it seems to be a property of many large real-world graphs. Our model includes as special cases many models previously studied. We show that, under one very weak assumption (that the expected number of edges is "what it should be"), many properties of the model can be determined, in particular the critical point of the phase transition, and the size of the giant component above the transition. We do this by relating our random graphs to branching processes, which are much easier to analyze. We also consider other properties of the model, showing, for example, that when there is a giant component, it is "stable": for a typical random graph, no matter how we add or delete o(n) edges, the size of the giant component does not change by more than o(n). © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 31, 3,122, 2007 [source]


Characterization of copper binding to the peptide amyloid-,(1,16) associated with Alzheimer's disease

BIOPOLYMERS, Issue 1 2006
Qing-Feng Ma
Abstract Amyloid-, peptide (A,) is the principal constituent of plaques associated with Alzheimer's disease (AD) and is thought to be responsible for the neurotoxicity associated with the disease. Copper binding to A, has been hypothesized to play an important role in the neruotoxicity of A, and free radical damage, and Cu2+ chelators represent a possible therapy for AD. However, many properties of copper binding to A, have not been elucidated clearly, and the location of copper binding sites on A, is also in controversy. Here we have used a range of spectroscopic techniques to characterize the coordination of Cu2+ to A,(1,16) in solution. Electrospray ionization mass spectrometry shows that copper binds to A,(1,16) at pH 6.0 and 7.0. The mode of copper binding is highly pH dependent. Circular dichroism results indicate that copper chelation causes a structural transition of A,(1,16). UV-visible absorption spectra suggest that three nitrogen donor ligands and one oxygen donor ligand (3N1O) in A,(1,16) may form a type II square-planar coordination geometry with Cu2+. By means of fluorescence spectroscopy, competition studies with glycine and L -histidine show that copper binds to A,(1,16) with an affinity of Ka , 107M,1 at pH 7.8. Besides His6, His13, and His14, Tyr10 is also involved in the coordination of A,(1,16) with Cu2+, which is supported by 1H NMR and UV-visible absorption spectra. Evidence for the link between Cu2+ and AD is growing, and this work has made a significant contribution to understanding the mode of copper binding to A,(1,16) in solution. © 2006 Wiley Periodicals, Inc. Biopolymers 83: 20,31, 2006 This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]