Home About us Contact | |||
Many Other Types (many + other_type)
Selected AbstractsSuppression of the mouse double minute 4 gene causes changes in cell cycle control in a human mesothelial cell line responsive to ultraviolet radiation exposureENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2009Melisa Bunderson-Schelvan Abstract The TP53 tumor suppressor gene is the most frequently inactivated gene in human cancer identified to date. However, TP53 mutations are rare in human mesotheliomas, as well as in many other types of cancer, suggesting that aberrant TP53 function may be due to alterations in its regulatory pathways. Mouse double minute 4 (MDM4) has been shown to be a key regulator of TP53 activity, both independently as well as in concert with its structural homolog, Mouse Double Minute 2 (MDM2). The purpose of this study was to characterize the effects of MDM4 suppression on TP53 and other proteins involved in cell cycle control before and after ultraviolet (UV) exposure in MeT5a cells, a nonmalignant human mesothelial line. Short hairpin RNA (shRNA) was used to investigate the impact of MDM4 on TP53 function and cellular transcription. Suppression of MDM4 was confirmed by Western blot. MDM4 suppressed cells were analyzed for cell cycle changes with and without exposure to UV. Changes in cell growth as well as differences in the regulation of direct transcriptional targets of TP53, CDKN1A (cyclin-dependent kinase 1,, p21) and BAX, suggest a shift from cell cycle arrest to apoptosis upon increasing UV exposure. These results demonstrate the importance of MDM4in cell cycle regulation as well as a possible role inthe pathogenesis of mesothelioma-type cancers. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source] Chronic Intermittent Ethanol Exposure During Adolescence Blocks Ethanol-Induced Inhibition of Spontaneously Active Hippocampal Pyramidal NeuronsALCOHOLISM, Issue 1 2006Sayaka Tokunaga Background: Binge alcohol drinking among adolescents has been a serious public health problem. A model of binge alcohol, chronic intermittent ethanol exposure (CIEE), during adolescence significantly attenuates ethanol-induced spatial memory deficits in rats. However, the attenuation was absent following a 12-day ethanol-free period. Since spatial memory is hippocampal dependent, a reduction in ethanol-induced spatial memory impairments may be due to a reduction in the ability of ethanol to inhibit the firing rate of single hippocampal pyramidal neurons following CIEE. Methods: Beginning on postnatal day 30 (P30), male adolescent Sprague-Dawley rats (Harlan) were administered 5.0 g/kg ethanol (n=10, CIEE-treated group) or an equivolume saline (n=10, CISE-treated group) every 48 hours for 20 days. Single hippocampal pyramidal neurons from 5 CIEE-treated rats and 5 CISE-treated rats were recorded on the day following completion of the chronic intermittent exposure procedure (animals now P50). Additionally, neurons from 5 CIEE-treated rats and 5 CISE-treated rats were recorded 12 days after the completion of the chronic intermittent exposure procedure (animals now P62). Results: Ethanol exposure during adolescence completely blocked ethanol-induced inhibition of hippocampal pyramidal neurons in rats that were CIEE exposed. However, the effect of CIEE on hippocampal neurophysiology was time dependent. Specifically, neurons recorded from CIEE-treated rats after a 12-day ethanol-free period had similar maximal inhibition as neurons from CISE-treated animals, although the time to reach inhibition was significantly greater in neurons from CIEE-treated rats. Conclusion: Chronic ethanol exposure during adolescence produces a reduction, or tolerance, to ethanol-induced inhibition of hippocampal pyramidal neural activity. Although the tolerance was greatly reversed after a 12-day ethanol-free period, neurons from CIEE animals inhibited slower than neurons from CISE animals. Since the hippocampus is known to be involved not only in spatial memory, but also in many other types of memory formation, the altered hippocampal functions because of CIEE during adolescence should be taken as a serious warning for society. [source] Extracellular signal-regulated protein kinase is activated in cervical intraepithelial neoplasms but inactivated in invasive cervical carcinomaPATHOLOGY INTERNATIONAL, Issue 7 2006Keiko Matsuura The extracellular signal-regulated protein kinase (ERK) signaling pathway has been reported to play important roles in cell growth in various neoplasms. The purpose of the present study was to immunohistochemically analyze the phosphorylation status (activity) of ERK in 24 cases of cervical carcinoma using an antiphosphorylated ERK antibody (,p-ERK Ab) that specifically recognizes the phosphorylated form of ERK (p-ERK). In normal cervical epithelium, p-ERK was found to be confined to basal cells that were negative for Ki-67, suggesting that ERK was not activated in proliferating normal cervical epithelium. In cervical intraepithelial neoplasms (CIN), increased abnormal parabasal cells were positive for both p-ERK and Ki-67, suggesting that ERK activation in CIN may be involved in tumor cell proliferation. In contrast, it was found that, in invasive cervical carcinomas, almost all the carcinoma cells were positive for Ki-67 but negative for p-ERK, suggesting that, in contrast to many other types of cancers, the ERK signaling pathway is downregulated in invasive cervical carcinoma. These findings suggest that the phosphorylation status of ERK differs between CIN and invasive carcinomas, and that downregulation of the ERK signaling pathway may contribute to transformation of CIN to invasive cervical carcinomas. [source] Acute Cellular Rejection Predominated by Monocytes Is a Severe Form of Rejection in Human Renal Recipients With or Without Campath-1H (Alemtuzumab) Induction TherapyAMERICAN JOURNAL OF TRANSPLANTATION, Issue 3 2005Ping L. Zhang Campath-1H has been used successfully for induction and has resulted in a low rate of acute cellular rejection (ACR) in renal transplantation in combination with various postoperative immunosuppression regimens. This study was undertaken to investigate the extent of monocyte involvement in ACR, with or without Campath-1H induction. We found that monocytes represented the majority of inflammatory cells in grades Ib or higher ACR, but not with Ia type of ACR, regardless of the status of Campath-1H induction. Cases of ACR, following Campath-1H induction, appear to demonstrate a ,pure form' of monocytic ACR, whereas monocytes were mixed with many other types of inflammatory cells in the cases of ACR in the absence of Campath-1H induction. In addition with Campath-1H induction, the cases of monocyte-predominant ACR were found to uniformly exhibit a good response to corticosteroid treatment. We conclude that monocyte-predominate ACR may represent a severe form of rejection, with or without Campath-1H treatment. [source] Expression of non-mast cell histidine decarboxylase in tumor-associated microvessels in human esophageal squamous cell carcinomas,APMIS, Issue 12 2008ZHENFENG LI Histamine is produced by mast cells and many other types of cells. The role of histamine released from mast cells in promoting tumor angiogenesis has been intensively studied; however, the role of non-mast cell histamine in regulating tumor angiogenesis has been largely ignored. In this study, tissue specimen sections from 43 patients with esophageal squamous cell carcinoma (ESCC) and normal esophageal biopsies from 17 heath individuals obtained from a high incidence area of north China were used to assess changes in microvessel density (MVD) and non-mast cell L-histidine decarboxylase (HDC) (the only rate-limiting enzyme that catalyzes the formation of histamine from L-histidine) expression in the tumor microenvironment by immunohistochemistry (IHC). In addition, the cellular characterization of non-mast cell HDC-positive cells in microvessels was examined by double IHC combined with HDC/CD34 and HDC/PCNA antibodies. These IHC analyses revealed a significantly increased HDC-positive MVD in ESCC as compared with normal controls, which accounted for ,61% of CD34-labeled general MVD in ESCC. Furthermore, IHC in serial sections and double IHC showed that most of these HDC-positive cells were CD34-positive endothelial cells in microvessels with an increased proliferative capacity. Thus, our results suggest that non-mast cell histamine expressed in endothelial cells of microvessels could be an additional cellular source and might play a role in regulating angiogenesis in ESCC. [source] |