Home About us Contact | |||
Many Invertebrates (many + invertebrates)
Selected AbstractsDispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlandsFRESHWATER BIOLOGY, Issue 11 2008BRAM VANSCHOENWINKEL Summary 1.,Many invertebrates inhabiting insular aquatic habitats rely on external agents or vectors to disperse. Besides water connections and wind, waterfowl and amphibians are known to mediate passive dispersal of freshwater invertebrates. However, the possibility of dispersal by terrestrial mammals has been largely overlooked. 2.,We investigated the potential of both external and internal zoochorous dispersal of aquatic invertebrates by the wild boar (Sus scrofa) in Mediterranean wetlands in the Camargue (France). As wild boar frequently visit wetlands for feeding and wallowing purposes, we hypothesized that they may be important passive dispersal vectors of aquatic invertebrates at a local scale. Dried mud was collected from selected ,rubbing trees' used by boars to dispose of parasites. Additionally, faecal pellets were collected from different locations in the wetland area. 3.,Seventeen freshwater invertebrate taxa including rotifers, cladocerans, copepods and ostracods hatched from sediment obtained from ,rubbing trees', while invertebrates hatching from dried faeces (10 taxa) were mainly rotifers. Dispersing invertebrates were collected up to 318 m from a nearest potential dispersal source. Both abundance and richness of invertebrates significantly decreased with dispersal distance. 4.,Our results demonstrate that large mammals such as wild boar can act as dispersal vectors of aquatic invertebrates at a local scale in the wetland area of the Camargue and suggest that external transport may be quantitatively more important than internal transport. As wallowing (mud bathing) is common in many terrestrial mammals, this mode of dispersal may be quite widespread. [source] Invertebrate immune systems , not homogeneous, not simple, not well understoodIMMUNOLOGICAL REVIEWS, Issue 1 2004Eric S Loker Summary:, The approximate 30 extant invertebrate phyla have diversified along separate evolutionary trajectories for hundreds of millions of years. Although recent work understandably has emphasized the commonalities of innate defenses, there is also ample evidence, as from completed genome studies, to suggest that even members of the same invertebrate order have taken significantly different approaches to internal defense. These data suggest that novel immune capabilities will be found among the different phyla. Many invertebrates have intimate associations with symbionts that may play more of a role in internal defense than generally appreciated. Some invertebrates that are either long lived or have colonial body plans may diversify components of their defense systems via somatic mutation. Somatic diversification following pathogen exposure, as seen in plants, has been investigated little in invertebrates. Recent molecular studies of sponges, cnidarians, shrimp, mollusks, sea urchins, tunicates, and lancelets have found surprisingly diversified immune molecules, and a model is presented that supports the adaptive value of diversified non-self recognition molecules in invertebrates. Interactions between invertebrates and viruses also remain poorly understood. As we are in the midst of alarming losses of coral reefs, increased pathogen challenge to invertebrate aquaculture, and rampant invertebrate-transmitted parasites of humans and domestic animals, we need a better understanding of invertebrate immunology. [source] Day,night changes in the spatial distribution and habitat preferences of freshwater shrimps, Gammarus pulex, in a stony streamFRESHWATER BIOLOGY, Issue 4 2005J. M. ELLIOTT Summary 1. As many invertebrates are nocturnal, their spatial distribution and habitat preferences may change from day to night. Both aspects are examined for Gammarus pulex by testing the hypotheses: (i) a power function was a suitable model for the spatial distribution of the shrimps in both day and night; (ii) diurnal and nocturnal spatial distributions were significantly different; (iii) diurnal and nocturnal habitat preferences were significantly different. Five different life-stages were treated separately. To ensure that the conclusions were consistent, large samples were taken near midday and midnight in April, June and November over 4 years at two sites about 3 km apart in a stony stream: downstream (n = 30) and upstream (n = 50). 2. The first and second hypotheses were supported at both sites. A power function, relating spatial variance (s2) to mean (m), was an excellent fit in all analyses (P < 0.001, r2 > 0.91), i.e. the spatial variance was density-dependent. All five life-stages were aggregated in the day. At night, the degree of aggregation increased for juveniles at higher densities but decreased for juveniles at lower densities, increased for immature females and males, but decreased slightly for mature females and especially mature males, the latter being close to a random distribution. There were no significant differences between sites, in spite of the lower numbers at the downstream site. 3. The third hypothesis was tested at only the upstream site and supported by comparisons between shrimp densities and 13 physical variables (distance from bank, water depth, water velocity, ten particle size-classes), and three non-physical variables (dry weights of bryophytes, leaf material, organic detritus). During the day, densities were strongly related to particle sizes with the following preferences: 0.5,8 mm for juveniles, 8,256 mm for the other life-stages with a weaker relationship for males. There were no significant positive relationships with the other variables, apart from bryophytes for immature shrimps and adults. At night, densities were unrelated to particle size; juveniles and immature shrimps preferred low water velocities near the banks, often where leaf material and organic detritus accumulated, females often preferred medium water velocities slightly away from the banks, and males showed no habitat preferences. 4. Day samples do not provide a complete picture of habitat preferences and probably identify refuge habitats. Day,night changes in spatial distribution and habitat preferences are an essential part of the behavioural dynamics of the shrimps and should be investigated in other species. [source] A quantitative study of day,night changes in the spatial distribution of insects in a stony streamJOURNAL OF ANIMAL ECOLOGY, Issue 1 2002J. M. Elliott Summary 1As many invertebrates are nocturnal, their spatial distribution may change from day to night. This behavioural aspect of their population dynamics has been ignored, but is now examined for the first time by testing the hypotheses: (i) a power function was a suitable model for the spatial distribution of common species of Ephemeroptera, Plecoptera and Trichoptera in a stony stream; (ii) the spatial distribution varied between species but was similar within species for larvae greater and smaller than half-size; (iii) diurnal and nocturnal spatial distributions were significantly different for each species. To ensure that the conclusions were consistent, large samples (n = 30) were taken near midday and midnight in April, June and November over 4 years. 2Twenty,one species were taken in sufficient numbers for the analyses; seven species were too sparse to be included. The first hypothesis was supported. A power function, relating spatial variance (s2) to mean (m), was an excellent fit in all the analyses (P < 0·001, r2 > 0·95), i.e. the spatial variance was density,dependent. The power b, often used as an ,index of aggregation', varied in the range 0·88,2·50. 3Most analyses supported the second hypothesis. For four species, the difference between the two size groups was just significant (P < 0·05), but was due to inadequate data for three species. Large larvae of the fourth species, the caddis Odontocerum albicorne, were less aggregated than small larvae at night, and were the only group with a b -value less than one. 4The third hypothesis was partially supported. The distribution did not change significantly (P > 0·05) for nine species; five burrowers in gravel, moss or mud, two highly mobile predators, one sedentary, case,building, Trichoptera species, and one net,spinning Trichoptera species. Aggregation was reduced significantly (P < 0·001) at night for four species, all case,building Trichoptera larvae. Aggregation increased significantly (P < 0·001) at night, except at low densities, for the remaining eight species, one being a nocturnal predator and the others being herbivorous species; all occurred frequently in night samples of invertebrate drift. Day,night changes in spatial distribution were therefore an essential part of the behavioural dynamics of 12 of the 21 species, and should be investigated in other species, including terrestrial species. [source] A new bacteriophage, VHML, isolated from a toxin-producing strain of Vibrio harveyi in tropical AustraliaJOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2000H.J. Oakey Some strains of Vibrio harveyi are known to be pathogenic for fish and many invertebrates including crustaceans. Despite their importance, their modes of virulence have yet to be fully elucidated. Here, we present a previously unreported bacteriophage extracted from a toxin-producing strain of V. harveyi isolated from moribund prawn larvae in tropical Australia. Classification into the family Myoviridae was based upon morphological characteristics (an icosahedral head, a neck/collar region and a sheathed rigid tail) and nucleic acid characteristics (double-stranded linear DNA). We have termed the bacteriophage VHML (Vibrio Harveyi Myovirus Like). VHML is a temperate bacteriophage that has a narrow host range and shows an apparent preference for V. harveyi above other vibrios (63 Vibrio isolates tested) and other genera (10 other genera were tested). The conventional methods for phage concentration and extraction of nucleic acids from phage particles were not efficient and the alternative methods that were used are discussed. [source] |