Home About us Contact | |||
Many Fungi (many + fungus)
Selected AbstractsInterspecific hybridization in plant-associated fungi and oomycetes: a reviewMOLECULAR ECOLOGY, Issue 11 2003C. L. Schardl Abstract Fungi (kingdom Mycota) and oomycetes (kingdom Stramenopila, phylum Oomycota) are crucially important in the nutrient cycles of the world. Their interactions with plants sometimes benefit and sometimes act to the detriment of humans. Many fungi establish ecologically vital mutualisms, such as in mycorrhizal fungi that enhance nutrient acquisition, and endophytes that combat insects and other herbivores. Other fungi and many oomycetes are plant pathogens that devastate natural and agricultural populations of plant species. Studies of fungal and oomycete evolution were extraordinarily difficult until the advent of molecular phylogenetics. Over the past decade, researchers applying these new tools to fungi and oomycetes have made astounding new discoveries, among which is the potential for interspecific hybridization. Consequences of hybridization among pathogens include adaptation to new niches such as new host species, and increased or decreased virulence. Hybrid mutualists may also be better adapted to new hosts and can provide greater or more diverse benefits to host plants. [source] Identification and characterization of the genes for N -acetylglucosamine kinase and N -acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicansFEBS JOURNAL, Issue 8 2001Toshiko Yamada-Okabe Like bacteria and many fungi, the pathogenic fungus Candida albicans can utilize GlcNAc as a carbon source for growth. A cluster of six genes was identified in the C. albicans genome. One of the genes in the cluster was CaNAG1, which is responsible for GlcN6P deaminase and is therefore essential for GlcNAc-dependent growth. The other five genes were designated CaNAG2, CaNAG3, CaNAG4, CaNAG5 and CaNAG6. The mRNA levels of CaNAG1, CaNAG2 and CaNAG5 were significantly induced by GlcNAc, whereas those of CaNAG3, CaNAG4 and CaNAG6 were not. Neither CaNAG2 nor CaNAG5 was essential for growth, but disruption of CaNAG2 or CaNAG5 greatly retarded the growth of cells using GlcNAc as the sole carbon source. Although no homolog of CaNAG2 or CaNAG5 was found in the Saccharomyces cerevisiae genome, CaNag2p displayed sequence similarities to Escherichia coli nagA, and CaNag5p is homologous to a wide variety of hexose kinases. When expressed as a fusion protein with glutathione S -transferase (GST), CaNag5p produced GlcNAc-P from GlcNAc in the presence of ATP, whereas GST alone did not. Furthermore, the recombinant GST,CaNag2p fusion protein converted GlcNAcP, which was produced by CaNag5p, into GlcNP. These results clearly demonstrate that CaNAG2 and CaNAG5 encode GlcNAcP deacetylase and GlcNAc kinase, respectively. CaNag5p recognized glucose and mannose as substrates, whereas the recently identified human GlcNAc kinase was specific to GlcNAc. Deletion of CaNAG2 or CaNAG5 markedly, and that of CaNAG1 moderately, attenuated the virulence of C. albicans in a mouse systemic infection model. Thus, it appears that GlcNAc metabolism of C. albicans is closely associated with its virulence. [source] Protein kinase A subunits of the ascomycete pathogen Mycosphaerella graminicola regulate asexual fructification, filamentation, melanization and osmosensingMOLECULAR PLANT PATHOLOGY, Issue 6 2006RAHIM MEHRABI SUMMARY As in many fungi, asexual reproduction of Mycosphaerella graminicola in planta is a complex process that requires proper differentiation of the infectious hyphae in the substomatal cavities of foliar tissue before pycnidia with conidia can be formed. In this study, we have investigated the role of the cAMP signalling pathway in development and pathogenicity of this pathogen by disruption of the genes encoding the catalytic (designated MgTpk2) and regulatory subunit (designated MgBcy1) of protein kinase A. The MgTpk2 and MgBcy1 mutants showed altered phenotypes in vitro when grown under different growth conditions. On potato dextrose agar (PDA), MgBcy1 mutants showed altered osmosensitivity and reduced melanization, whereas the MgTpk2 mutants showed accelerated melanization when compared with the M. graminicola IPO323 wild-type strain and ectopic transformants. MgTpk2 mutants also secreted a dark-brown pigment into yeast glucose broth medium. In germination and microconidiation assays, both mutants showed a germination pattern similar to that of the controls on water agar, whereas on PDA filamentous growth of MgTpk2 mutants was impaired. Pathogenicity assays showed that the MgTpk2 and MgBcy1 mutants were less virulent as they caused only limited chlorotic and necrotic symptoms at the tips of the inoculated leaves. Further analyses of the infection process showed that MgTpk2 and MgBcy1 mutants were able to germinate, penetrate and colonize mesophyll tissue, but were unable to produce the asexual fructifications, which was particularly due to inappropriate differentiation during the late stage of this morphogenesis-related process. [source] Use of real-time quantitative PCR to investigate root and gall colonisation by co-inoculated isolates of the nematophagous fungus Pochonia chlamydosporiaANNALS OF APPLIED BIOLOGY, Issue 1 2009S.D. Atkins Abstract The fungus Pochonia chlamydosporia is a potential biological control agent for plant parasitic nematodes, but to date, there has been little investigation of interactions (competitive, antagonistic or synergistic) between different isolates that occur together on roots and nematode galls. Real-time quantitative PCR (qPCR) has greatly improved the study of many fungi in situ on plant and nematode hosts, but distinguishing closely related isolates remains difficult. In this study, primers to discriminate P. chlamydosporia var. chlamydosporia and P. chlamydosporia var. catenulata were used to measure the relative abundance of isolates of the two varieties when inoculated singly or together on tomato plants. Also, sequence-characterised amplified polymorphic regions were identified to distinguish two different isolates of P. chlamydosporia var. chlamydosporia. Individual 1-cm root segments and nematode galls were excised, DNA extracted and subjected to real-time qPCR with the discriminatory primers. The qPCR method proved sensitive and reproducible and demonstrated that roots and nematode galls were not uniformly colonised by the fungi. Results indicated that the P. chalmydosporia var. catenulata isolate was more abundant on roots and eggs than P. chlamydosporia var. chlamydosporia, but all the isolates infected a similar proportion of nematode eggs. There was an indication that the abundance of each fungal isolate was reduced in co-inoculation experiments compared with single inoculations, but the number of root segments and galls colonised was not statistically significantly different. [source] |