Many Experimental Models (many + experimental_models)

Distribution by Scientific Domains


Selected Abstracts


Reducing conditions significantly attenuate the neuroprotective efficacy of competitive, but not other NMDA receptor antagonists in vitro

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2000
Ashley K. Pringle
Abstract Inappropriate activation of NMDA receptors during a period of cerebral ischaemia is a crucial event in the pathway leading to neuronal degeneration. However, significant research has failed to deliver a clinically active NMDA receptor antagonist, and competitive NMDA antagonists are ineffective in many experimental models of ischaemia. The NMDA receptor itself has a number of modulatory sites which may affect receptor function under ischaemic conditions. Using rat organotypic hippocampal slice cultures we have investigated whether the redox modulatory site affects the neuroprotective efficacy of NMDA receptor antagonists against excitotoxicity and experimental ischaemia (OGD). NMDA toxicity was significantly enhanced in cultures pretreated with a reducing agent. The noncompetitive antagonist MK-801 and a glycine-site blocker were equally neuroprotective in both normal and reduced conditions, but there was a significant rightward shift in the dose,response curves of the competitive antagonists APV and CPP and the uncompetitive antagonist memantine. OGD produced neuronal damage predominantly in the CA1 region, which was prevented by MK-801 and memantine, but not by APV or CPP. Inclusion of an oxidizing agent during the period of OGD had no effect alone, but significantly enhanced the neuroprotective potency of the competitive antagonists. These data clearly demonstrate that chemical reduction of the redox modulatory site of the NMDA receptor decreases the ability of competitive antagonists to block NMDA receptor-mediated neuronal damage, and that the reducing conditions which occur during simulated ischaemia are sufficient to produce a similar effect. This may have important implications for the design of future neuroprotective agents. [source]


Proposed model of botulinum toxin-induced muscle weakness in the rabbit

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2005
D. Longino
Abstract Osteoarthritic patients show only a weak association between radiographic signs of joint disease and joint pain and disability. Conversely, muscle weakness is one of the earliest and most common symptoms of patients with osteoarthritis (OA). However, while many experimental models of osteoarthritis include a component of muscular weakness, no model has isolated this factor satisfactorily. Therefore, the purpose of this study was to develop and validate an experimental animal model of muscle weakness for future use in the study of OA. Botulinum Type-A toxin (BTX-A) was uni-laterally injected into the quadriceps musculature of New Zealand white rabbits (3.5 unit/kg). Isometric knee extensor torque at a range of knee angles and stimulation frequencies, and quadriceps muscle mass, were quantified for control animals, and at one- and six-months post-repeated injections, in both, the experimental and the contralateral hindlimb. Ground reaction forces were measured in all animals while hopping across two force platforms. Isometric knee extension torque and quadriceps muscle mass was systematically decreased in the experimental hindlimb. Vertical ground reaction forces in the push off phase of hopping were also decreased in the experimental compared to control hindlimbs. We conclude that BTX-A injection into the rabbit musculature creates functional and absolute muscle weakness in a reproducible manner. Therefore, this model may be used to systematically study the possible effects of muscle weakness on joint degeneration, either as an isolated intervention, or in combination with other interventions (anterior cruciate ligament transection, meniscectomy) known to create knee joint degeneration. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


How to modulate inflammatory cytokines in liver diseases

LIVER INTERNATIONAL, Issue 9 2006
Herbert Tilg
Abstract: Most acute and chronic liver diseases are characterized by inflammatory processes with enhanced expression of various pro- and anti-inflammatory cytokines in the liver. These cytokines are the driving force of many inflammatory liver disorders often resulting in fibrosis and cirrhosis. Severe alcoholic hepatitis is a prototypic tumor necrosis factor-, (TNF-,)-associated disease. This knowledge has recently led to pilot studies with promising results investigating specific anti-TNF drugs such as infliximab or etanercept in the treatment of this disease, although a recently performed controlled French study did show a potential detrimental effect of this approach. Anti-TNF treatment strategies might also improve chronic hepatitis C infection as shown by one controlled trial using etanercept administered subcutaneously for 24 weeks. Furthermore, several case reports suggest that TNF-, neutralization is not harmful to patients chronically infected with this virus. In contrast, neutralization of TNF-, worsens and might even be associated with fatalities in chronic hepatitis B infection. Anti-inflammatory cytokines such as interleukin-10 (IL-10) have also been tried in patients with chronic liver diseases. Whereas IL-10 administered to patients with chronic hepatitis C virus infection shows indeed anti-inflammatory effects in the liver, it seems to act as a proviral agent thereby limiting its clinical utility. Another cytokine with major anti-inflammatory potential is the adipokine adiponectin, as its administration is beneficial in many experimental models of liver injury. Interference with cytokine pathways and/or administration of anti-inflammatory cytokines will be of major interest in the future therapy of many liver diseases. [source]


Inositol hexaphosphate inhibits ultraviolet B,induced signal transduction

MOLECULAR CARCINOGENESIS, Issue 3 2001
Nanyue Chen
Abstract Inositol hexaphosphate (InsP6) has an effective anticancer action in many experimental models in vivo and in vitro. Ultraviolet B (UVB) radiation is believed to be responsible for many of the carcinogenic effects related to sun exposure, and alteration in UVB-induced signal transduction is associated with UVB-induced carcinogenesis. Here we report the effects of InsP6 on UVB-induced signal transduction. InsP6 strongly blocked UVB-induced activator protein-1 (AP-1) and NF-,B transcriptional activities in a dose-dependent manner. InsP6 also suppressed UVB-induced AP-1 and nuclear factor ,B (NF-,B) DNA binding activities and inhibited UVB-induced phosphorylation of extracellular signal-regulated protein kinases (Erks) and c-Jun NH2-terminal kinases (JNKs). Phosphorylation of p38 kinases was not affected. InsP6 also blocked UVB-induced phosphorylation of I,B-,, which is known to result in the inhibition of NF-,B transcriptional activity. InsP6 does not block UVB-induced phosphotidylinositol-3, (PI-3) kinase activity, suggesting that the inhibition of UVB-induced AP-1 and NF-,B activities by InsP6 is not mediated through PI-3 kinase. Because AP-1 and NF-,B are important nuclear transcription factors that are related to tumor promotion, our work suggests that InsP6 prevents UVB-induced carcinogenesis by inhibiting AP-1 and NF-,B transcription activities. © 2001 Wiley-Liss, Inc. [source]


Erectile Function in Two-Kidney, One-Clip Hypertensive Rats is Maintained by a Potential Increase in Nitric Oxide Production

THE JOURNAL OF SEXUAL MEDICINE, Issue S3 2009
A. Elizabeth Linder PhD
ABSTRACT Introduction., Hypertension is closely associated with erectile dysfunction (ED) as it has been observed in many experimental models of hypertension. Additionally, epidemiological studies show that approximately a third of hypertensive patients have ED. Aim., To test the hypothesis that the two-kidney, one-clip (2K-1C) rat model of hypertension displays normal erectile function due to increased nitric oxide (NO) production in the penis. Methods., Ganglionic-induced increase in intracavernosal pressure (ICP)/mean arterial pressure (MAP) ratio was used as an index of erectile function in 2K-1C and in normotensive sham-operated (SHAM) anesthetized rats. Cavernosal strips from hypertensive and normotensive rats were used for isometric tension measurement. The contraction induced by alpha-adrenergic agonist phenylephrine and the relaxation induced by the NO donor sodium nitroprusside (SNP) and by the Rho-kinase inhibitor Y-27632 were performed in the absence and in the presence of the NO synthase inhibitor N, -nitro-L-arginine (L-NNA). Results., Changes in ICP/MAP induced by ganglionic stimulation were not different between 2K-1C and SHAM rats. The contractile response induced by phenylephrine as well as the relaxation induced by SNP or the Y-27632 were similar in cavernosal strips from both groups. However, in the presence of L-NNA, the relaxation induced by Y-27632 was significantly impaired in 2K-1C compared to SHAM. Conclusions., These data suggest that hypertension and ED could be dissociated from high levels of blood pressure in some animal models of hypertension. Erectile function in 2K-1C hypertensive rats is maintained in spite of the increased Rho-kinase activity by increased NO signaling. Linder AE, Dorrance AM, Mills TM, Webb RC, and Leite R. Erectile function in two-kidney, one-clip hypertensive rats is maintained by a potential increase in nitric oxide production. J Sex Med 2009;6(suppl 3):279,285. [source]