Manner Independent (manner + independent)

Distribution by Scientific Domains


Selected Abstracts


Disruption of insulin pathways alters trehalose level and abolishes sexual dimorphism in locomotor activity in Drosophila

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2006
Yesser Hadj Belgacem
Abstract Insulin signaling pathways are implicated in several physiological processes in invertebrates, including the control of growth and life span; the latter of these has also been correlated with juvenile hormone (JH) deficiency. In turn, JH levels have been correlated with sex-specific differences in locomotor activity. Here, the involvement of the insulin signaling pathway in sex-specific differences in locomotor activity was investigated in Drosophila. Ablation of insulin-producing neurons in the adult pars-intercerebralis was found to increase trehalosemia and to abolish sexual dimorphism relevant to locomotion. Conversely, hyper-insulinemia induced by insulin injection or by over-expression of an insulin-like peptide decreases trehalosemia but does not affect locomotive behavior. Moreover, we also show that in the head of adult flies, the insulin receptor (InR) is expressed only in the fat body surrounding the brain. While both male and female InR mutants are hyper-trehalosemic, they exhibit similar patterns of locomotor activity. Our results indicate that first, insulin controls trehalosemia in adults, and second, like JH, it controls sex-specific differences in the locomotor activity of adult Drosophila in a manner independent of its effect on trehalose metabolism. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


Non-muscle myosin IIB helps mediate TNF cell death signaling independent of actomyosin contractility (AMC)

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2010
Patrick G. Flynn
Abstract Non-muscle myosin II (NM II) helps mediate survival and apoptosis in response to TNF-alpha (TNF), however, NM II's mechanism of action in these processes is not fully understood. NM II isoforms are involved in a variety of cellular processes and differences in their enzyme kinetics, localization, and activation allow NM II isoforms to have distinct functions within the same cell. The present study focused on isoform specific functions of NM IIA and IIB in mediating TNF induced apoptosis. Results show that siRNA knockdown of NM IIB, but not NM IIA, impaired caspase cleavage and nuclear condensation in response to TNF. NM II's function in promoting cell death signaling appears to be independent of actomyosin contractility (AMC) since treatment of cells with blebbistatin or cytochalasin D failed to inhibit TNF induced caspase cleavage. Immunoprecipitation studies revealed associations of NM IIB with clathrin, FADD, and caspase 8 in response to TNF suggesting a role for NM IIB in TNFR1 endocytosis and the formation of the death inducing signaling complex (DISC). These findings suggest that NM IIB promotes TNF cell death signaling in a manner independent of its force generating property. J. Cell. Biochem. 9999: 1365,1375, 2010. © 2010 Wiley-Liss, Inc. [source]


A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-independent manner

ARTHRITIS & RHEUMATISM, Issue 11 2009
Leonard Rifas
Objective Chronic T cell activation is central to the etiology of rheumatoid arthritis (RA), an inflammatory autoimmune disease that leads to severe focal bone erosions and generalized systemic osteoporosis. Previous studies have shown novel cytokine-like activities in medium containing activated T cells, characterized by potent induction of the osteoblastic production of interleukin-6 (IL-6), an inflammatory cytokine and stimulator of osteoclastogenesis, as well as induction of an activity that directly stimulates osteoclast formation in a manner independent of the key osteoclastogenic cytokine RANKL. This study was undertaken to identify the factors secreted by T cells that are responsible for these activities. Methods Human T cells were activated using anti-human CD3 and anti-human CD28 antibodies for 72 hours in AIM V serum-free medium to obtain T cell,conditioned medium, followed by concentration and fractionation of the medium by fast-protein liquid chromatography. Biologically active fractions were resolved using sodium dodecyl sulfate,polyacrylamide gel electrophoresis. Major bands were analyzed by mass spectrometry, and a major candidate protein was identified. This novel cytokine was cloned, and its expression was analyzed using recombinant DNA technologies. Results A single novel cytokine that could induce both osteoblastic IL-6 production and functional osteoclast formation in the absence of osteoblasts or RANKL and that was insensitive to the effects of the RANKL inhibitor osteoprotegerin was identified in the activated T cell,conditioned medium; this cytokine was designated secreted osteoclastogenic factor of activated T cells (SOFAT). Further analysis of SOFAT revealed that it was derived from an unusual messenger RNA splice variant coded by the threonine synthase,like 2 gene homolog, which is a conserved gene remnant coding for threonine synthase, an enzyme that functions only in microorganisms and plants. Conclusion SOFAT may act to exacerbate inflammation and/or bone turnover under inflammatory conditions such as RA or periodontitis and in conditions of estrogen deficiency. [source]


Angiopoietin 1 directly induces destruction of the rheumatoid joint by cooperative, but independent, signaling via ERK/MAPK and phosphatidylinositol 3-kinase/Akt

ARTHRITIS & RHEUMATISM, Issue 7 2007
Akira Hashiramoto
Objective To determine whether angiopoietin 1 (Ang-1) potentiates overgrowth of the synovium and joint degradation in rheumatoid arthritis (RA), and to clarify the cell-signaling mechanisms of Ang-1 in the rheumatoid joint. Methods Expression of Ang-1, TIE-2 (a receptor for Ang-1), and matrix metalloproteinase 3 (MMP-3) was studied by immunohistochemistry. Activation of the ERK/MAPK and phosphatidylinositol (PI) 3-kinase/Akt pathways and of NF-,B was determined by Western blotting and an NF-,B p65 DNA binding activity assay, respectively. Induction of apoptosis was evaluated by nuclear staining, cell viability assay, and Western blotting of caspases. Synovial cell migration was evaluated by actin polymerization, Western blotting of Rho family proteins, and affinity purification with Rhotekin-Rho and p21-activated kinase 1. Matrix degradation was examined by induction of proMMP-3 secretion from synovial cells followed by in vitro cartilaginous matrix degradation assay. Results Ang-1 stimulated the ERK/MAPK and PI 3-kinase/Akt pathways in a cooperative but independent manner, which enhanced rheumatoid synovium overgrowth and joint destruction. In addition, Ang-1 activated NF-,B via Akt to promote cell growth, but also inhibited cell apoptosis via ERK and Akt. Ang-1 directly potentiated the extension of synovial cells in an ERK- and Akt-dependent manner by up-regulating Rho family proteins, which attenuated Rac signaling and led to membrane ruffling. Ang-1 induced proMMP-3 secretion from synovial cells, which resulted in direct degradation of the cartilaginous matrix. Conclusion Ang-1 stimulates the ERK/MAPK and PI 3-kinase/Akt pathways cooperatively, but in a manner independent of each other, to directly potentiate synovium overgrowth and joint destruction in RA. In addition to inflammatory cytokines, Ang-1/TIE-2 signaling appears to be an independent factor that contributes to the destruction of the rheumatoid joint. [source]