Manipulative Experiments (manipulative + experiment)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Seasonal and inter-stream variations in the population dynamics, growth and secondary production of an algivorous fish (Pseudogastromyzon myersi: Balitoridae) in monsoonal Hong Kong

FRESHWATER BIOLOGY, Issue 9 2009
GRACE Y. YANG
Summary 1.,Balitorid loaches are widespread and highly diverse in Asian streams, yet their life history and ecology have received little attention. We investigated seasonal (wet versus dry season) and spatial variation in populations of algivorous Pseudogastromyzon myersi in Hong Kong, and estimated the magnitude of secondary production by this fish in pools in four streams (two shaded and two unshaded) over a 15-month period. 2.,Mean population densities of P. myersi ranged from 6.0 to 23.2 individuals m,2, constituting more than half (and typically >70%) of benthic fishes censused. Abundance was c. 25% greater in the wet season, when recruitment occurred. Significant density differences among streams were not related to shading conditions and were evident despite small-scale variations in P. myersi abundance among pools. Mean biomass varied among streams from 0.85 to 3.87 g ash-free dry weight (AFDW) m,2. Spatial and seasonal patterns in biomass and density were similar, apart from some minor disparities attributable to differences in mean body size among populations. 3.,All four P. myersi populations bred once a year in June and July, and life spans varied from 24 to 26 months. Populations consisted of three cohorts immediately after recruitment but, for most of the study period, only two cohorts were evident. Cohort-specific growth rates did not differ significantly among streams but, in all streams, younger cohorts had higher cohort-specific growth rates. 4.,Secondary production of P. myersi estimated by the size-frequency (SF) method was 2.7,11.5 g AFDW m,2 year,1 and almost twice that calculated by the increment-summation (IS) method (1.2,6.6 g AFDW m,2 year,1). Annual P/B ratios were 1.17,2.16 year,1 (IS) and 2.73,3.22 year,1 (SF). Highest production was recorded in an unshaded stream and the lowest in a shaded stream, but site rankings by production did not otherwise match shading conditions. Wet-season production was six times greater than dry-season production, and daily production fell to almost zero during January and February. Cool temperatures (<17 °C) may have limited fish activity and influenced detectability during some dry-season censuses. Estimates of abundance and annual production by P. myersi are therefore conservative. 5.,Comparisons with the literature indicate that the abundance and production of P. myersi in Hong Kong was high relative to other benthic fishes in tropical Asia, or their temperate counterparts in small streams. Manipulative experiments are needed to determine the influence of P. myersi, and algivorous balitorids in general, on periphyton dynamics and energy flow in Asian streams. [source]


Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn

GLOBAL CHANGE BIOLOGY, Issue 9 2008
NEETA S. BIJOOR
Abstract We examined the influence of temperature and management practices on the nitrogen (N) cycling of turfgrass, the largest irrigated crop in the United States. We measured nitrous oxide (N2O) fluxes, and plant and soil N content and isotopic composition with a manipulative experiment of temperature and fertilizer application. Infrared lamps were used to increase surface temperature by 3.5±1.3 °C on average and control and heated plots were split into high and low fertilizer treatments. The N2O fluxes increased following fertilizer application and were also directly related to soil moisture. There was a positive effect of warming on N2O fluxes. Soils in the heated plots were enriched in nitrogen isotope ratio (,15N) relative to control plots, consistent with greater gaseous losses of N. For all treatments, C4 plant C/N ratio was negatively correlated with plant ,15N, suggesting that low leaf N was associated with the use of isotopically depleted N sources such as mineralized organic matter. A significant and unexpected result was a large, rapid increase in the proportion of C4 plants in the heated plots relative to control plots, as measured by the carbon isotope ratio (,13C) of total harvested aboveground biomass. The C4 plant biomass was dominated by crabgrass, a common weed in C3 fescue lawns. Our results suggest that an increase in temperature caused by climate change as well as the urban heat island effect may result in increases in N2O emissions from fertilized urban lawns. In addition, warming may exacerbate weed invasions, which may require more intensive management, e.g. herbicide application, to manage species composition. [source]


Striking a balance between retaining populations of protected seahorses and maintaining swimming nets

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2010
David Harasti
Abstract 1.The fish family Syngnathidae (seahorses, pipefish, pipehorses and seadragons) is fully protected in New South Wales, Australia, but in some countries certain species are threatened by unsustainable collecting, capture as incidental bycatch, and habitat degradation. 2.Within Sydney Harbour, two species of seahorses (Hippocampus abdominalis and Hippocampus whitei) have been found to colonize artificial structures such as jetty pylons and protective netted swimming enclosures. These protective nets are subject to fouling from epibiotic growth (algae, ascidians, bryozoans, etc.) and rubbish, which causes the nets to collapse from the additional weight. Local authorities employ diving contractors on an ad hoc basis to remove the epibiota from nets. 3.Surveys showed a significant decline in the numbers of both seahorse species at one site following the replacement of a net, and recovery of the H. whitei population took more than 15 months. 4.A manipulative experiment tested the importance of epibiotic growth for seahorses. H. whitei, tagged with individual marks, were allocated to sections of a net that had undergone different cleaning procedures. Seahorse size, position on the net and total population abundance were recorded every 2 weeks over a 3 month period. It was demonstrated that seahorses have a significant positive association with epibiotic growth and proximity to the sea floor. Seahorse populations also showed seasonal variation in abundance with increased numbers on the net during the breeding season (spring,summer). 5.This project has led to the development of best practice net cleaning procedures for local authorities in Sydney Harbour to manage growth on the nets while minimizing impacts on seahorse populations. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Ant versus bird exclusion effects on the arthropod assemblage of an organic citrus grove

ECOLOGICAL ENTOMOLOGY, Issue 3 2010
JOSEP PIÑOL
1. Predation-exclusion experiments have highlighted that top-down control is pervasive in terrestrial communities, but most of these experiments are simplistic in that they only excluded a single group of predators and the effect of removal was evaluated on a few species from the community. The main goal of our study was to experimentally establish the relative effects of ants and birds on the same arthropod assemblage of canopy trees. 2. We conducted 1-year long manipulative experiments in an organic citrus grove intended to quantify the independent effects of bird and ant predators on the abundance of arthropods. Birds were excluded with plastic nets whereas ants were excluded with sticky barriers on the trunks. The sticky barrier also excluded other ground dwelling insects, like the European earwig Forficula auricularia L. 3. Both the exclusion of ants and birds affected the arthropod community of the citrus canopies, but the exclusion of ants was far more important than the exclusion of birds. Indeed, almost all groups of arthropods had higher abundance in ant-excluded than in control trees, whereas only dermapterans were more abundant in bird-excluded than in control trees. A more detailed analysis conducted on spiders also showed that the effect of ant exclusion was limited to a few families rather than being widespread over the entire diverse spectrum of spiders. 4. Our results suggest that the relative importance of vertebrate and invertebrate predators in regulating arthropod populations largely depends on the nature of the predator,prey system. [source]


The effect of initial biomass in manipulative experiments on plants

FUNCTIONAL ECOLOGY, Issue 1 2006
Z. KIKVIDZE
No abstract is available for this article. [source]


Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones

GLOBAL CHANGE BIOLOGY, Issue 9 2008
YIQI LUO
Abstract Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive effects of climate warming (T), altered precipitation amounts [doubled (DP) and halved (HP)] and seasonality (SP, moving precipitation in July and August to January and February to create summer drought), and elevated [CO2] (C) on net primary production (NPP), heterotrophic respiration (Rh), net ecosystem production (NEP), transpiration, and runoff. We examined those responses in seven ecosystems, including forests, grasslands, and heathlands in different climate zones. The modeling analysis showed that none of the three-way interactions among T, C, and altered precipitation was substantial for either carbon or water processes, nor consistent among the seven ecosystems. However, two-way interactive effects on NPP, Rh, and NEP were generally positive (i.e. amplification of one factor's effect by the other factor) between T and C or between T and DP. A negative interaction (i.e. depression of one factor's effect by the other factor) occurred for simulated NPP between T and HP. The interactive effects on runoff were positive between T and HP. Four pairs of two-way interactive effects on plant transpiration were positive and two pairs negative. In addition, wet sites generally had smaller relative changes in NPP, Rh, runoff, and transpiration but larger absolute changes in NEP than dry sites in response to the treatments. The modeling results suggest new hypotheses to be tested in multifactor global change experiments. Likewise, more experimental evidence is needed for the further improvement of ecosystem models in order to adequately simulate complex interactive processes. [source]


Variation in ecophysiology and carbon economy of invasive and native woody vines of riparian zones in south-eastern Queensland

AUSTRAL ECOLOGY, Issue 6 2010
OLUSEGUN O. OSUNKOYA
Abstract Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships , signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species. [source]


Foraging and vein-cutting behaviour of Euploea core corinna (W. S. Macleay) (Lepidoptera: Nymphalidae) caterpillars feeding on latex-bearing leaves

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 4 2000
Anthony R Clarke
Abstract Caterpillars of Euploea core corinna (W. S. Macleay) sever leaf veins prior to feeding on their latex-bearing host plants, which restricts the flow of latex at feeding sites. The severing of leaf veins by insects feeding on latex-bearing plants is commonly referred to as ,sabotaging' and is thought to be an evolved response by the insect to counter the negative effects of feeding on latex-rich leaves. Sabotaging behaviour is described for all instars of E. core corinna, with particular attention given to neonates. Vein cutting by neonate E. core corinna caterpillars can occur within 2 h of hatching, with most caterpillars establishing feeding sites within 10 h. Commonly, first instars cut an arc-shaped row of leaf side-veins parallel to the leaf margin, but they may also cut the leaf mid-rib in a fashion similar to older instar larvae. From a sample of 50 E. core corinna larvae, representing all instars, we found that the diameters of the veins cut by caterpillars are closely correlated to larval head width (r = 0.90). Through manipulative experiments, we demonstrate for the first time that sabotaging behaviour in neonate caterpillars imposes no detectable short-term physiological costs on those caterpillars. [source]