Home About us Contact | |||
Major Inhibitory Neurotransmitter (major + inhibitory_neurotransmitter)
Selected AbstractsKetosis and brain handling of glutamate, glutamine, and GABAEPILEPSIA, Issue 2008Marc Yudkoff Summary We hypothesize that one mechanism of the anti-epileptic effect of the ketogenic diet is to alter brain handling of glutamate. According to this formulation, in ketotic brain astrocyte metabolism is more active, resulting in enhanced conversion of glutamate to glutamine. This allows for: (a) more efficient removal of glutamate, the most important excitatory neurotransmitter; and (b) more efficient conversion of glutamine to GABA, the major inhibitory neurotransmitter. [source] Postnatal maturation of Na+, K+, 2Cl, cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysisEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002Serge Marty Abstract GABA, a major inhibitory neurotransmitter, depolarizes hippocampal pyramidal neurons during the first postnatal week. These depolarizations result from an efflux of Cl, through GABAA -gated anion channels. The outward Cl, gradient that provides the driving force for Cl, efflux might be generated and maintained by the Na+, K+, 2Cl, cotransporter (NKCC) that keeps intracellular Cl, concentration above electrochemical equilibrium. The developmental pattern of expression of the cotransporter in the hippocampus is not known. We studied the postnatal distribution pattern of NKCC in the hippocampus using a monoclonal antibody (T4) against a conserved epitope in the C-terminus of the cotransporter molecule. We also examined the temporal relationships between the developmental pattern of NKCC expression and the formation of perisomatic GABAergic synapses. This study was aimed at determining, with antivesicular inhibitory amino acid transporter (VIAAT) antibodies, whether perisomatic GABAergic synapses are formed preferentially at the time when GABA is depolarizing. During the first postnatal week, NKCC immunolabelling was restricted to cell bodies in the pyramidal cell layer and in the strata oriens and radiatum. In contrast, at postnatal day 21 (P21) and in adult animals little or no labelling occurred in cell bodies; instead, a prominent dendritic labelling appeared in both pyramidal and nonpyramidal neurons. The ultrastructural immunogold study in P21 rat hippocampi corroborated the light-microscopy results. In addition, this study revealed that a portion of the silver-intensified colloidal gold particles were located on neuronal plasmalemma, as expected for a functional cotransporter. The formation of inhibitory synapses on perikarya of the pyramidal cell layer was a late process. The density of VIAAT-immunoreactive puncta in the stratum pyramidale at P21 reached four times the P7 value in CA3, and six times the P7 value in CA1. Electron microscopy revealed that the number of synapses per neuronal perikaryal profile in the stratum pyramidale of the CA3 area at P21 was three times higher than at P7, even if a concomitant 20% increase in the area of these neuronal perikaryal profiles occurred. It is concluded that, in hippocampal pyramidal cells, there is a developmental shift in the NKCC localization from a predominantly somatic to a predominantly dendritic location. The presence of NKCC during the first postnatal week is consistent with the hypothesis that this transporter might be involved in the depolarizing effects of GABA. The depolarizing effects of GABA may not be required for the establishment of the majority of GABAergic synapses in the stratum pyramidale, because their number increases after the first postnatal week, when GABA action becomes hyperpolarizing. [source] Effects of the paratemnus elongatus pseudoscorpion venom in the uptake and binding of the L -glutamate and GABA from rat cerebral cortexJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2006Wagner Ferreira dos Santos Abstract L -Glu is the most important and widespread excitatory neurotransmitter of the vertebrates. Four types of receptors for L -glu have been described. This neurotransmitter modulates several neuronal processes, and its dysfunction causes chronic and acute diseases. L -Glu action is terminated by five distinct transporters. Antagonists for these receptors and modulators of these transporters have anticonvulsant and neuroprotective potentials, as observed with the acylpoliamines and peptides isolated from spiders, solitary and social wasp venoms. On the other hand, the major inhibitory neurotransmitter in mammalian nervous tissue is the GABA. Drugs that enhance GABA neurotransmission comprise effective approaches to protecting the brain against neuronal injury. Is this study, we demonstrate for the first time the inhibition of the [3H]L -glu binding to its specific sites in synaptosomal membranes from rat cerebral cortex, produced by 0.027 U of Paratemnus elongatus venom (EC50). The venom of P. elongatus changes Km and Vmax into the high affinity uptake of the L -glu and decreases Km and Vmax into the parameters of the GABA uptake from rat synaptosomes. This leads us to speculate on the possible presence of selective and specific compounds in this venom that act in L -glu and GABA dynamics, and therefore, that can serve as tools and new drug models for understanding these neurotransmissions. © 2006 Wiley Periodicals, Inc. J Biochem Mol Toxicol 20:27,34, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20113 [source] Glycine Receptors Contribute to Hypnosis Induced by EthanolALCOHOLISM, Issue 6 2009Jiang H. Ye Background:, Glycine is a major inhibitory neurotransmitter in the adult central nervous system (CNS), and its receptors (GlyRs) are well known for their effects in the spinal cord and the lower brainstem. Accumulating evidence indicates that GlyRs are more widely distributed in the CNS, including many supraspinal regions. Previous in vitro studies have demonstrated that ethanol potentiates the function of these brain GlyRs, yet the behavioral role of the brain GlyRs has not been well explored. Methods:, Experiments were conducted in rats. The loss of righting reflex (LORR) was used as a marker of the hypnotic state. We compared the LORR induced by systematic administration of ethanol and of ketamine in the absence and presence of the selective glycine receptor antagonist strychnine. Ketamine is a general anesthetic that does not affect GlyRs. Results:, Systemically administered (by intraperitoneal injection) ethanol and ketamine dose-dependently induced LORR in rats. Furthermore, systemically administered (by subcutaneous injection) strychnine dose-dependently reduced the percentage of rats exhibiting LORR induced by ethanol, increased the onset time, and decreased the duration of LORR. Strychnine had no effect, however, on the LORR induced by ketamine. Conclusions:, Given that hypnosis is caused by neuronal depression in upper brain areas, we therefore conclude that brain GlyRs contribute at least in part to the hypnosis induced by ethanol. [source] GABA and glycine are protective to mature but toxic to immature rat cortical neurons under hypoxiaEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005Peng Zhao Abstract Although recent studies suggest that ,-aminobutyric acid (GABA) and glycine may be ,inhibitory' to mature neurons, but ,excitatory' to immature neurons under normoxia, it is unknown whether inhibitory neurotransmitters are differentially involved in neuronal response to hypoxia in immature and mature neurons. In the present study, we exposed rat cortical neurons to hypoxia (1% O2) and examined the effects of three major inhibitory neurotransmitters (GABA, glycine and taurine) on the hypoxic neurons at different neuronal ages [days in vitro (DIV)4,20]. Our data showed that the cortical neurons expressed both GABAA and glycine receptors with differential developmental profiles. GABA (10,2000 µm) was neuroprotective to hypoxic neurons of DIV20, but enhanced hypoxic injury in neurons of <,DIV20. Glycine at low concentrations (10,100 µm) exhibited a similar pattern to GABA. However, higher concentrations of glycine (1000,2000 µm) for long-term exposure (48,72 h) displayed neuroprotection at all ages (DIV4,20). Taurine (10,2000 µm), unlike GABA and glycine, displayed protection only in DIV4 neurons, and was slightly toxic to neurons >,DIV4. In comparison with delta-opioid receptor (DOR)-induced protection in DIV20 neurons exposed to 72 h of hypoxia, glycine-induced protection was weaker than that of DOR but stronger than that of GABA and taurine. These data suggest that the effects of the inhibitory neurotransmitters on hypoxic cortical neurons are age-dependent, with GABA and glycine being neurotoxic to immature neurons and neuroprotective to mature neurons. [source] |