Home About us Contact | |||
Main Prey (main + prey)
Selected AbstractsThe importance of interspecific interactions for breeding-site selection: peregrine falcons seek proximity to raven nestsECOGRAPHY, Issue 6 2004Fabrizio Sergio The advent of GIS is initiating a rapid increase in the utilization of wildlife-habitat models as tools for species and habitat management. However, such models rarely include estimates of interspecific interactions among explanatory variables. We tested the importance of such variables by using the peregrine falcon Falco peregrinus, a medium-sized raptor frequently reported to be affected by heterospecifics, as a model species. In an Alpine population, compared to random locations, peregrines selected breeding sites farther from conspecifics, on taller cliffs, with higher availability of farmland and closer to raven Corvus corax nests. Within suitable habitat, peregrines selected sites near ravens and far from elevations associated with golden eagle Aquila chrysaetos nests. Productivity increased with cliff size, farmland availability (rich in the local main prey) and with proximity to ravens, suggesting that the observed choices were adaptive. Finally, at the regional level, peregrine density peaked at low elevation and was positively associated with raven density. The results suggested an active breeding association of peregrines with ravens, which may provide early-warning cues against predators and safe alternative nest-sites. They also confirmed the importance of including estimates of interspecific interactions among explanatory variables, which may: 1) make models more realistic; 2) increase their predictive power by lowering unexplained variance due to unmeasured factors; 3) provide unexpected results such as the cryptic, large-scale breeding association of our study; and 4) stimulate further hypothesis formulation and testing, ultimately leading to deeper ecological knowledge of the study system. [source] Predictive models of habitat preferences for the Eurasian eagle owl Bubo bubo: a multiscale approachECOGRAPHY, Issue 1 2003Jose Antonio Martínez Habitat preference of eagle owls Bubo bubo were examined through comparing habitat composition around 51 occupied cliffs and 36 non-occupied cliffs in Alicante (E Spain). We employed Generalized Linear Models to examine patterns of habitat preference at three different spatial scales: nest site (7 km2), home range (25 km2), and landscape (100 km2). At the nest site scale, occupied cliffs were more rugged, had a greater proportion of forest surface in the surroundings, and were further from the nearest paved road than unoccupied cliffs. Additionally, probability of having an occupied cliff increased when there was another occupied territory in the surroundings. At both the home range scale and the landscape scale, high probabilities of presence of eagle owls were related to high percentages of Mediterranean scrubland around the cliffs, which are the preferred habitat of European rabbits Oryctolagus cuniculus, the main prey of the owls. We suggest a hierarchical process of habitat selection in the eagle owl concerning suitable trophic resources at the broadest scales and adequate sites for breeding and roosting at the smallest scale. However, it should be noted that some structural features such as the proximity of roads were not necessarily avoided by the owls, but their presence were possibly constrained by systematic killing of individuals. Our paper provides new evidence for the requirement of multi-scale approaches to gain insight into both the different limiting factors for the persistence of populations and the role of individual perception of the environment in the evolution of habitat selection. [source] Spatial distribution of the Japanese common squid, Todarodes pacificus, during its northward migration in the western North Pacific OceanFISHERIES OCEANOGRAPHY, Issue 2 2006ATSUSHI KAWABATA Abstract The spatial distribution of Todarodes pacificus in and near the Kuroshio/Oyashio Transition Zone during its northward migration was examined by comparative surveys using two types of mid-water trawl net and supplementary squid jigging from June to July 2000. The vertical and horizontal distribution patterns varied for different body sizes in relation to the oceanographic structure. Todarodes pacificus of 1,20 cm dorsal mantle length (ML) were widely distributed from the coastal waters of Japan to near 162°E longitude, probably due to transport by the Kuroshio Extension (KE). Todarodes pacificus smaller than 10 cm ML were mainly distributed in temperate surface layers at sea surface temperatures (SSTs) >15°C near the KE meander probably because of their poor tolerance to lower temperatures and limited swimming ability. Squid of 10,15 cm ML were distributed in the offshore waters of 10,15°C SST and in the coastal waters of northern Honshu, and underwent diel vertical migrations between the sea surface at night and deeper layers during the daytime. Squid larger than 15 cm ML were distributed in the coastal feeding grounds of northern Honshu and Hokkaido until they began their southward spawning migration. They also underwent diel vertical migrations, but remained deeper at night than the squid of 10,15 cm ML; this migration pattern closely matched that of their main prey such as euphausiids. We concluded that as T. pacificus grow, they shift their distribution range from the temperate surface layer around the KE toward the colder deeper layers, above 5°C, in the Oyashio and coastal areas. [source] Spatial distribution and feeding habits of Pacific cod (Gadus macrocephalus) larvae in Mutsu Bay, JapanFISHERIES OCEANOGRAPHY, Issue 2 2002Tetsuya Takatsu The spatial distributions and feeding habits of Pacific cod (Gadus macrocephalus) larvae, and the spatial distributions of copepod nauplii and copepodites, their main prey, were examined in Mutsu Bay from February to March during 1989,92. Yolk-sac larvae were caught at 30,45 m depth at the bay mouth. Larvae without yolk were collected at 8,45 m depth at the bay mouth and the inner part of the bay, and large larvae were chiefly found in the bay. This geographical pattern in larval size may have been because of transport to the inner part of Mutsu Bay by the Tsugaru Warm Current. The dominant taxa of copepod nauplii and copepodites in the diet and the environment changed each year. Larvae fed mainly on abundant taxa in the environment, suggesting that larvae are opportunistic feeders. Nauplii and copepodites were abundant in the bay, especially in 1992. Copepodites were slightly more abundant in the diet of cod larvae in 1992 than in 1991, but this difference was smaller than in the environment. In addition, larvae with empty digestive tracts were scarce in 1991 and 1992. Prey concentrations in the bay in 1991 and 1992 seem to have been high enough to sustain most Pacific cod larvae. [source] Spatial organization, group living and ecological correlates in low-density populations of Eurasian badgers, Meles melesJOURNAL OF ANIMAL ECOLOGY, Issue 3 2002Eloy Revilla Summary 1,Territoriality and group living are described in a low-density population of Eurasian badgers, Meles meles L., by studying the patterns of spatial grouping and territory marking, as well as the differences between individuals in some of their characteristics (body condition and dispersal) and in their space use (seasonally, periods of activity and interaction between pairs of individuals) under strong seasonal fluctuations in the availability of the key resource (young rabbits, Oryctolagus cuniculus L.). Finally, the role of the spatial distribution of the main prey (young rabbits) in the development of sociality was also studied in order to test some of the assumptions and predictions of the resource dispersion hypothesis (RDH). 2,Badgers were territorial, showing a flexible system of territory marking, which includes the marking of the most used areas (sett-latrines at the centres of activity) and additionally, at the smaller territories, a system of border-latrines in the areas of contact between territories. The maximum use of border-latrines was associated with the reproductive season, and that of sett-latrines with the season of food scarcity. 3,In the study area where badgers had rabbits as main prey, territories were occupied by small groups of animals, formed by one adult female who reproduced, one adult male who also showed signs of reproductive activity, the cubs of the year (if there was reproduction) and some animals born during previous years, which remained in their natal territory until their dispersal (normally during the mating season of their third or fourth year of life). This system was not strictly fixed as males, given the opportunity, expanded their territories to encompass additional females. Territories in another study site were occupied by one adult female (marked), plus the cubs of the year and another adult individual (unmarked). 4,In winter and spring dominant females and subordinates used only a small fraction of their territories, moved short distances, at a low speed and covering small areas per night. These seasons corresponded with the reproduction of rabbits (highest food availability). Dominant females were the only individuals using all the territory available in the summer (lowest food availability), when badgers had the worst body condition. Food availability increased again in autumn, as did body condition, while range sizes were again reduced. Dominant males used the same proportion of their territories over all seasons. However, in winter (reproductive season) they moved faster, over longer distances, and covered larger areas per period of activity. These results indicate that use of space by dominant males was affected by different factors from that of dominant females and subordinates. 5,RDH does not seem to explain group living in our populations because: (a) territoriality in each pair of primary animals was driven by different factors (trophic resources for females and females for males); (b) dominant males acted as expansionists; and (c) territory size was related to its richness and not to patch dispersion. 6,We propose an integrative hypothesis to explain not only group formation but also interpopulation variability in the social organization of badgers within ecological, demographic and behavioural constraints and in the light of current theory on delayed dispersal. [source] Estimation of immigration rate using integrated population modelsJOURNAL OF APPLIED ECOLOGY, Issue 2 2010Fitsum Abadi Summary 1.,The dynamics of many populations is strongly affected by immigrants. However, estimating and modelling immigration is a real challenge. In the past, several methods have been developed to estimate immigration rate but they either require strong assumptions or combine in a piecewise manner the results from separate analyses. In most methods the effects of covariates cannot be modelled formally. 2.,We developed a Bayesian integrated population model which combines capture,recapture data, population counts and information on reproductive success into a single model that estimates and models immigration rate, while directly assessing the impact of environmental covariates. 3.,We assessed parameter identifiability by comparing posterior distributions of immigration rates under varying priors, and illustrated the application of the model with long term demographic data of a little owl Athene noctua population from Southern Germany. We further assessed the impact of environmental covariates on immigration. 4.,The resulting posterior distributions were insensitive to different prior distributions and dominated by the observed data, indicating that the immigration rate was identifiable. Average yearly immigration into the little owl population was 0·293 (95% credible interval 0·183,0·418), which means that ca 0·3 female per resident female entered the population every year. Immigration rate tended to increase with increasing abundance of voles, the main prey of little owls. 5.Synthesis and applications. The means to estimate and model immigration is an important step towards a better understanding of the dynamics of geographically open populations. The demographic estimates obtained from the developed integrated population model facilitate population diagnoses and can be used to assess population viability. The structural flexibility of the model should constitute a useful tool for wildlife managers and conservation ecologists. [source] Food habits of the silky shark Carcharhinus falciformis (Müller & Henle, 1839) off the western coast of Baja California Sur, MexicoJOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2010A. A. Cabrera-Chávez-Costa Summary The objective of this study was to establish the trophic niche of the silky shark and to determine the ecological role of this predator in the ecosystem close to Baja California. The trophic spectrum was analyzed from samples taken during summer and autumn (2000,2002) from the fishing camps of Punta Lobos and Punta Belcher on the western coast of Baja California Sur. A total of 263 stomach contents were analyzed (143 with food; 120 empty). The index of relative importance (IRI) showed that at Punta Lobos, silky sharks fed mainly on red crabs Pleuroncodes planipes (%IRI = 83%), whereas at Punta Belcher the main food item was the jumbo squid Dosidicus gigas (%IRI = 41%), followed by chub mackerel Scomber japonicus (%IRI = 33%). According to the Levin Index (Bi), the trophic niche breadth in silky sharks is low (Bi = <0.6), which means that silky sharks are specialist predators because they mainly consume three prey types: red crab, chub mackerel, and jumbo squid. The Shannon-Wiener Index indicated that all trophic categories at Punta Belcher (0.85,1.22) had lower diversity than at Punta Lobos (0.50,1.6), because the silky shark feeds more on tropical prey found close to Punta Lobos. The Morisita-Horn Index (C,) showed an overlap in the diet between the two areas analyzed and between sexes (C, = >0.6). The juveniles and adult females did not show any overlap. In the caloric analysis of the main prey, the jumbo squid (D. gigas) contributed the most calories to the silky shark diet (76%). [source] The diet of blue whiting, hake, horse mackerel and mackerel off PortugalJOURNAL OF APPLIED ICHTHYOLOGY, Issue 1 2002H. N. Cabral This paper deals with the diets of blue whiting Micromesistius poutassou (Risso 1810), hake Merluccius merluccius (L. 1758), horse mackerel Trachurus trachurus (L. 1758), and mackerel Scomber scombrus (L. 1758) off Portugal and explores variations in fish length, water depth, latitude and season. All four species feed on fish; however, hake and mackerel are the first and second most important predators, respectively, blue whiting being the most important fish prey for both species. The diets of blue whiting and horse mackerel are composed mainly of crustaceans. Diet variations according to predator fish size are more important than either latitude or depth. In the diets of blue whiting, hake and horse mackerel, prey importance increases with predator size. For blue whiting and horse mackerel, diet variations with fish length and water depth are correlated: small fish are closely associated with coastal areas where they feed on copepods and decapod larvae. Seasonality in the diet is apparent for blue whiting, hake and mackerel. For blue whiting, the decapod Pasiphaea sivado is the most important prey in summer and autumn, being replaced by the euphausid Meganyctiphanes norvegica in winter. In the diet of hake, seasonality was characterised by the major importance of Macroramphosus scolopax in autumn, whereas the diet of mackerel consisted of zooplankton in summer, fish and decapods in autumn and decapod larvae in winter. Seasonal changes in the diet of horse mackerel correspond to a higher diversity of prey in autumn compared to other seasons (although euphausids are the main prey in all seasons). Seasonality in feeding activity is not as marked for the other species as it is for horse mackerel; the percentage of empty stomachs of horse mackerel is greatest in winter, when spawning takes place at the Portuguese coast. [source] Owls and rabbits: predation against substandard individuals of an easy preyJOURNAL OF AVIAN BIOLOGY, Issue 2 2008Vincenzo Penteriani The interactions among the multiple factors regulating predator-prey relationships make predation a more complex process than previously thought. The degree to which substandard individuals are captured disproportionately seems to be better a function of the difficulty of prey capture than of the hunting techniques (coursing vs. ambushing predators). That is, when the capture and killing of a prey species is easy, substandard individuals will be predated in proportion to their occurrence in the prey population. In the present study, we made use of eagle owls Bubo bubo and their main prey, the rabbit Oryctolagus cuniculus: (a) the brightness of the white tails of rabbits seems to be correlated with the physical condition of individuals, (b) by using the tails of predated rabbits as an index of individual condition, we found that eagle owls seem to prefer substandard individuals (characterized by duller tails), and (c) by using information from continuous radiotracking of 14 individuals, we suggest that the difficulty of rabbit capture could be low. Although the relative benefits of preying on substandard individuals should considerably decrease when a predator is attacking an easy prey, we hypothesise that the eagle owl preference for substandard individuals could be due to the easy detection of poor individuals by a visual cue, the brightness of the rabbit tail. Several elements allow us to believe that this form of visual communication between a prey and one of its main predators could be more widespread than previously thought. In fact: (a) visual signalling plays a relevant role in intraspecific communication in eagle owls and, consequently, visual signals could also play a role in interspecific interactions, and (b) empirical studies showed that signals may inform the predator that it has been perceived, or that the prey is in a sufficiently healthy state to elude the predator. [source] Large-scale spatio-temporal shifts in the diet of a predator mediated by an emerging infectious disease of its main preyJOURNAL OF BIOGEOGRAPHY, Issue 8 2009Marcos Moleón Abstract Aim, To explore the influence of an emerging infectious disease (EID) affecting a prey species on the spatial patterns and temporal shifts in the diet of a predator over a large geographical scale. We reviewed studies on the diet of Bonelli's eagles (Hieraaetus fasciatus) in order to determine the repercussions of the reduction in the density of its main prey, the rabbit (Oryctolagus cuniculus), caused by outbreaks of rabbit haemorrhagic disease (RHD) since 1988. Location, Western continental Europe. Methods, We compiled published and unpublished information on the diet of breeding Bonelli's eagles from Portugal, Spain and France for a 39-year study period (1968,2006). Nonparametric tests were used in order to analyse temporal shifts in diet composition and trophic diversity (H,) between the periods of ,high' (before outbreak of RHD) and ,low' rabbit density (after outbreak of RHD). A combination of hierarchical agglomerative clustering and non-metric multidimensional scaling (NMDS) analyses were used to test for the existence of geographical patterns in the diet of Bonelli's eagles in each period. Results, The diet of the Bonelli's eagle consisted of rabbit (28.5%), pigeons (24.0%), partridges (15.3%), ,other birds' (11.6%), ,other mammals' (7.1%), corvids (7.0%), and herptiles (6.4%). However, RHD had large consequences for its feeding ecology: the consumption of rabbits decreased by one-third after the outbreak of RHD. Conversely, trophic diversity (H,) increased after outbreak of RHD. At the same time, the analyses showed clear geographical patterns in the diet of the Bonelli's eagle before, but not after, RHD outbreak. Main conclusions, Geographical patterns in the diet of the Bonelli's eagle in western Europe seem to be driven mainly by spatio-temporal variation in the abundance of rabbits and, to a lesser extent, by the local (territorial) environmental features conditioning the presence and density of alternative prey species. We show that an EID can disrupt predator,prey relationships at large spatial and temporal scales through a severe decline in the population of the main prey species. Hence we argue that strict guidelines should be drawn up to prevent human-aided dissemination of ,pathogen pollution', which can threaten wildlife not only at the population and species level but also at the community and ecosystem scale. [source] Dietary specialization and climatic-linked variations in extant populations of Ethiopian wolvesAFRICAN JOURNAL OF ECOLOGY, Issue 2 2010Jorgelina Marino Abstract Understanding of the biology of rarity is central to the conservation of some endangered species. Rare taxa are often reported to be specialized, but they are usually poorly studied. The Ethiopian wolf (Canis simensis) is endemic to the Ethiopian highlands and in two major populations, Bale and Arsi in the southern range of the species, it preys almost exclusively upon diurnal rodents all year round, mainly molerats Tachyoryctes macrocephalus and common molerats T. splendens, respectively. Where these large rodents are absent or rare, wolves are expected to rely more heavily on nocturnal rats or livestock. Prey remains in 161 scats from five newly studied populations confirmed that wolves are indeed specialist rodent hunters elsewhere, and that their narrow diets are dominated by diurnal Murinae rats (60,83% of prey occurrences). Swamp rats Otomys typus were the main prey, followed by grass rats Arvicanthis abyssinicus. Common molerats, Lophuromys rats and nocturnal Stenocephalemys spp. constituted the variable portion of the diets, and their proportional contributions varied across populations in relation to elevation and latitude. Towards the north, where the climate is drier and human populations more dense, wolves predate more frequently on rat-sized prey, including nocturnal species, with implications for the survival of small populations in the Northern Highlands. Résumé Pour la conservation de certaines espèces en danger, il est essentiel de bien comprendre la biologie de la rareté. On rapporte souvent que des taxons rares sont spécialisés, mais ils sont généralement peu étudiés. Le loup d'Ethiopie Canis simensis est endémique des hauts plateaux éthiopiens et deux populations majeures, Bale et Arsi, dans la partie sud de leur aire de répartition, se nourrissent toute l'année presque exclusivement de petits rongeurs diurnes, surtout des rats-taupes géants Tachyoryctes macrocephalus et, plus communs, des rats taupes des montagnes T. splendens. Là où ces rongeurs sont absents ou rares, on s'attend à ce que les loups se nourrissent davantage de rats nocturnes ou de bétail. Des restes de proies identifiées dans 161 crottes de cinq nouvelles populations étudiées récemment ont confirmé que les loups sont bien, ailleurs, des chasseurs spécialisés en rongeurs et que leur régime alimentaire peu varié est dominé par des Murinae diurnes (60,83% des proies observées). Les rats des marais Otomys typusétaient les proies principales, suivis par les rats des herbes Arvicanthis abyssinicus. Les rats-taupes communs, les rats Lophuromys et les nocturnes Stenocephalemys spp. constituaient des portions variables du menu, et la proportion de leur contribution variait pour les populations en fonction de l'elevation et de la latitude. Vers le nord, là où le climat est plus sec et où la population humaine est plus dense, les loups s'attaquent plus souvent à des proies de la taille des rats, y compris des espèces nocturnes, ce qui a des implications pour la survie des petites populations des hauts plateaux du nord. [source] Diel variation in feeding rate and prey composition of herring and mackerel in the southern Gulf of St LawrenceJOURNAL OF FISH BIOLOGY, Issue 5 2003E. Darbyson Diel feeding patterns of herring Clupea harengus and mackerel Scomber scombrus in the southern Gulf of St Lawrence were examined based on samples obtained by midwater trawling between 19 and 26 June 2001. Within 3 h time periods, stomach contents tended to be more similar between fish from the same tow than between fish from different tows. Thus, in contrast to previous diet studies, which have used individual fish stomachs as independent observations, tow was used as the experimental unit in statistical analyses in this study. Diel patterns in stomach fullness were identified using generalized additive models. Two peaks in stomach fullness occurred for herring, one in the morning and the other in the evening. Mackerel showed an increase in feeding intensity throughout the day with a peak in mid-afternoon. The diel changes in stomach contents suggested rapid gastric evacuation rates for both species, especially for herring. The estimate of the instantaneous evacuation rate for herring was twice that for mackerel. Calanus copepods (mainly C. hyperboreus), fishes (mainly capelin Mallotus villosus) and euphausiids were the main prey found in the stomachs of both species. Calanus copepods dominated the diet of herring regardless of time period. They also dominated the diet of mackerel during the late afternoon, evening and night while fishes and euphausiids were dominant during the morning and early afternoon. These diel patterns emphasize the need for sampling throughout the day and night in order to estimate ration and diet composition for bioenergetic and ecosystem models. [source] Summer predation rates on ungulate prey by a large keystone predator: how many ungulates does a large predator kill?JOURNAL OF ZOOLOGY, Issue 4 2008J. W. Laundré Abstract Estimates of predation rates by large predators can provide valuable information on their potential impact on their ungulate prey populations. This is especially the case for pumas Puma concolor and its main prey, mule deer Odocoileus hemionus. However, only limited information on predation rates of pumas exist where mule deer are the only ungulate prey available. I used VHF telemetry data collected over 24-h monitoring sessions and once daily over consecutive days to derive two independent estimates of puma predation rates on mule deer where they were the only large prey available. For the 24-h data, I had 48 time blocks on female pumas with kittens, 43 blocks on females without kittens and 30 blocks on males. For the daily consecutive data, the average number of consecutive days followed was 51.5±4.2 days. There were data on five female pumas with kittens, five pregnant females and nine females without kittens. Predation rates over an average month of 30 days from the 24-h monitoring sessions were 2.0 mule deer per puma month for males (15.1 days per kill), 2.1 mule deer per puma month (14.3 days per kill) for females without kittens and 2.5 mule deer per puma month (12.0 days per kill) for pregnant females and females with kittens. For the consecutive daily data, females without kittens had an estimated predation rate of 2.1±0.14 mule deer per puma month (14.9±0.90 days per kill). Pregnant and females with kittens had predation rates of 2.7±0.18 and 2.6±0.21 mule deer per puma month, respectively (11.4±0.72 and 12.0±1.1 days per kill, respectively). Predation rates estimated in this study compared with those estimated by energetic demand for pumas in the study area but were lower than other field derived estimates. These data help increase our understanding of predation impacts of large predators on their prey. [source] Home range and habitat use by cheetahs (Acinonyx jubatus) in the Kruger National ParkJOURNAL OF ZOOLOGY, Issue 2 2003L. S. Broomhall Abstract Cheetah Acinonyx jubatus home-range size and habitat use were analysed using radio-tracking data collected in the southern district of the Kruger National Park (KNP) between 1987 and 1990. Meaningful estimates of home-range size, using the 95% minimum convex polygon method, were 126 km2 for a three-male cheetah coalition, 195 km2 for a solitary male, and 150 km2 and 171 km2 for two female cheetahs. Although cheetahs used all habitats according to their availability, they did show a preference for open savanna habitat because their core or total home ranges centred on these habitats. Female cheetahs used denser woodland habitat more frequently than males, as they seemed to be influenced by the distribution of their main prey, impala Aepyceros melampus, which also preferred denser woodland habitat. [source] The fin whale Balaenoptera physalus (L. 1758) in the Mediterranean SeaMAMMAL REVIEW, Issue 2 2003GIUSEPPE NOTARBARTOLO-DI-SCIARA ABSTRACT 1.,The ecology and status of fin whales Balaenoptera physalus in the Mediterranean Sea is reviewed. The species' presence, morphology, distribution, movements, population structure, ecology and behaviour in this semi-enclosed marine region are summarized, and the review is complemented with original, previously unpublished data. 2.,Although the total size of the fin whale population in the Mediterranean is unknown, an estimate for a portion of the western basin, where most of the whales are known to live, was approximately 3500 individuals. High whale densities, comparable to those found in rich oceanic habitats, were found in well-defined areas of high productivity. Most whales concentrate in the Ligurian-Corsican-Provençal Basin, where their presence is particularly noticeable during summer; however, neither their movement patterns throughout the region nor their seasonal cycle are clear. 3.,Based on genetic studies, fin whales from the Mediterranean Sea are distinct from North Atlantic conspecifics, and may constitute a resident population, separate from those of the North Atlantic, despite the species' historical presence in the Strait of Gibraltar. Fin whales are known to calve in the Mediterranean, with births peaking in November but occurring at lower rates throughout the year. They feed primarily on krill Meganyctiphanes norvegica which they capture by diving to depths in excess of 470 m. It is suggested that the extensive vertical migratory behaviour of its main prey may have influenced the social ecology of this population. 4.,Known causes of mortality and threats, including collisions with vessels, entanglement in fishing gear, deliberate killing, disturbance, pollution and disease, are listed and discussed in view of the implementation of appropriate conservation measures to ensure the species' survival in the region. [source] KILLER WHALE ATTACKS ON MINKE WHALES: PREY CAPTURE AND ANTIPREDATOR TACTICSMARINE MAMMAL SCIENCE, Issue 4 2005John K. B. Ford Abstract We describe nine incidents of predation or attempted predation of minke whales (Balaenoptera acutorostrata) by mammal-hunting "transient" killer whales (Orcinus orca) in coastal waters of British Columbia, Washington, and southeastern Alaska. Pursuits of minke whales were characterized by prolonged chases on a straight heading at velocities of 15,30 km/h. In four of the nine cases the adultsized minke whale gradually outdistanced the killer whales, which abandoned the high-speed pursuit after 0.5,1 h. In one case the minke beached itself and died. Four attacks were successful. In one instance a subadult minke was killed in open water following a chase. In two cases the fleeing minke entered a confined bay and was killed by the killer whales. One adult minke was taken after apparently attempting to seek cover beside a large sailboat. Minke whales made no attempt to physically defend themselves and were killed by repeated ramming or by asphyxiation. Although killer whales are capable of sprinting speeds greater than those of minke whales, it appears that adult minkes can maintain higher sustained speeds and evade capture if sufficient space for an extended escape trajectory is available. Successful predation of minke whales in coastal waters is rare compared to pinnipeds and small cetaceans, the main prey of transient killer whales. [source] The impact of raptors on the abundance of upland passerines and wadersOIKOS, Issue 8 2008Arjun Amar The issue of predator limitation of vertebrate prey populations is contentious, particularly when it involves species of economic or conservation value. In this paper, we examine the case of raptor predation on upland passerines and waders in Scotland. We analysed the abundance of five wader and passerine species on an upland sporting estate in southern Scotland during an eight-year period when hen harrier, peregrine and merlin numbers increased due to strict law enforcement. The abundance of meadow pipit and skylark declined significantly during this time. Golden plover also showed a declining trend, whereas curlew increased significantly and there was a near significant increase in lapwings. Contrasting the local population trends of these species with trends on nearby areas revealed higher rates of decline for meadow pipit and skylark at the site where raptors increased, but no differences in trends for any of the three wader species. There was a negative relationship between the number of breeding harriers and meadow pipit abundance the same year and between total annual raptor numbers and meadow pipit abundance. Predation rates of meadow pipit and skylark determined from observations at harrier nests suggested that predation in June was sufficient to remove up to 40% of the June meadow pipit population and up to 34% of the June skylark population. This ,quasi-natural' experiment suggests that harrier predation limited the abundance of their main prey, meadow pipit, and possibly the abundance of skylark. Thus, high densities of harriers may in theory reduce the abundance of the prey species which determine their breeding densities, potentially leading to lower harrier breeding densities in subsequent years. We found no evidence to suggest that raptor predation limited the populations of any of the three wader species. We infer that concerns over the impact of natural densities of hen harriers on vulnerable upland waders are unjustified. [source] Cyclic voles, prey switching in red fox, and roe deer dynamics , a test of the alternative prey hypothesisOIKOS, Issue 2 2003Petter Kjellander Medium-sized predators sometimes switch to alternative prey species as their main prey declines. Our objective of this study was to test the alternative prey hypothesis for a medium sized predator (red fox, Vulpes vulpes), a small cyclically fluctuating main prey (microtine voles) and larger alternative prey (roe deer fawns, Capreolus capreolus). We used long-term time series (28 years) on voles, red fox and roe deer from the Grimsö Wildlife Research Area (59°40,N, 15°25,E) in south-central Sweden to investigate interspecific relationships in the annual fluctuations in numbers of the studied species. Annual variation in number of roe deer fawns in autumn was significantly and positively related to vole density and significantly and negatively related to the number of fox litters in the previous year. In years of high vole density, predation on roe deer fawns was small, but in years of low vole density predation was more severe. The time lag between number of fox litters and predation on fawns was due to the time lag in functional response of red fox in relation to voles. This study demonstrates for the first time that the alternative prey hypothesis is applicable to the system red fox, voles and roe deer fawns. [source] Effects of food supplementation on home-range size, reproductive success, productivity and recruitment in a small population of Iberian lynxANIMAL CONSERVATION, Issue 1 2010J. V. López-Bao Abstract In a conservation context, food supplementation is a management tool used to reverse the decline of food-limited populations by means of positive changes in behaviour and fitness that may be reflected in population parameters. The critically endangered Iberian lynx Lynx pardinus has suffered a dramatic decline primarily because of the severe drop of its main prey, the European wild rabbit Oryctolagus cuniculus. To reverse this situation, a food supplementation programme has been implemented in Doñana, south-west Spain, since 2002. In this study, we assess the utility of providing artificial food to reduce home-range (HR) size, and to increase productivity, survival and recruitment in a scenario of low lynx density, as compared with reference data from the same population in the absence of extra food. Food supplementation produced a significant contraction of core areas, but not of complete lynx HRs. We did not detect any significant change in productivity or dispersal rates, but supplementation could have helped transient adult lynx to settle down. The positive effects of food supplementation may have been partly countered by factors such as inbreeding, Allee effects and disease outbreaks, whose effects may have been exacerbated in this small lynx population. Food supplementation, however, proved useful to retain individuals, to keep range sizes within their normal range of values, thus maintaining spatial organization, and to allow lynx reproduction and kitten survival in areas with very low prey density. Therefore, we recommend keeping an extensive and intensive supplementary feeding programme until the density of wild rabbits will enable the viability of this endangered lynx population. [source] Landscape features and crustacean prey as predictors of the Southern river otter distribution in Chile.ANIMAL CONSERVATION, Issue 6 2009M. A. Sepúlveda Abstract Understanding the processes that affect freshwater ecosystems at the watershed level is fundamental for the conservation and management of river otters. During 2 consecutive years, we surveyed the occurrence of the Southern river otter Lontra provocax and its main prey (crustaceans) in a watershed of 9900 km2 in the Chilean temperate forest. We modeled predator and prey distributions with a variety of statistical techniques by relating a set of environmental predictors to species occurrence records. Otter and crustaceans were associated with areas of intermediate to low human disturbance with a mosaic of riparian vegetation densities, mainly at low altitudes. The singularity of the Andean Range, with a very marked elevation gradient and oligotrophic watercourses in the higher areas, created more vulnerable conditions for otter presence because prey abundances were limited in those areas. Human impacts affected otter populations at a landscape scale through the presence of main roads, as these were mostly located in lower parts of the watershed where otters have their primary habitat. These results point to the importance of land management and protection of low-elevation areas where otters still occur to ensure the long-term viability of its freshwater populations. [source] Leptodora kindti and Flexible Foraging Behaviour of Fish , Factors behind the Delayed Biomass Peak of Cladocerans in Lake HiidenvesiINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2003Laura Uusitalo Abstract In the eutrophic L. Hiidenvesi, the spring biomass maximum of cladoceran zooplankton is missing and the highest biomass takes place in July,August. The factors behind the delayed biomass peak were studied in four different basins of the lake with concomitant data on cladocerans assemblages, density of the predatory cladoceran Leptodora kindti and food composition of fish. In all the basins, the abundance of Leptodora peaked in June, being highest (up to 800 ind. m,3) in the two most shallow basins (max depth < 4 m). The duration of the high population density was short and in July-August Leptodora density stayed below 200 ind. m,3, although the water temperature was still favourable. The collapse of the Leptodora population coincided with the change in the feeding habits of fish. In early summer, fish predation was targeted mainly on copepods and zoobenthos, while in high summer Leptodora was one of the main preys of perch, white bream and bleak. The biomass of herbivorous cladocerans was below 10 ,g C l,1 in June, and climbed to a maximum in August in the two most shallow basins (34 and 76 ,g C l,1), in July in the deepest basin (27 ,g C l,1), and in September in the intermediate basin (55 ,g C l,1). In the two most shallow basins, the death rate of the dominating cladoceran, Daphnia cristata, closely followed the food consumption rate by the Leptodora population. In the deeper basins, the agreement was not so close, smelts (Osmerus eperlanus) and chaoborids being important predators of herbivores. The duration of the period of high Leptodora density thus depended on the predation pressure by fish, while the increased fish predation on Leptodora in July,August allowed the elevation of the biomass of herbivorous cladocerans. [source] |