Main Pest (main + pest)

Distribution by Scientific Domains


Selected Abstracts


Potential for controlling codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) in Argentina using the sterile insect technique and egg parasitoids

JOURNAL OF APPLIED ENTOMOLOGY, Issue 3 2010
E. Botto
Abstract Codling moth is the main pest affecting apples and pears worldwide. Most pest control strategies used against this insect have relied on the use of broad-spectrum insecticides which have led to non-desirable effects like pesticide resistance, residues in the environment, human health concerns and the reduction of access to international markets. Therefore, alternative pest control strategies that would result in sustainable fruit production systems while taking care of the environment are strongly promoted. The use of the sterile insect technique has proven to be a valuable pest control tactic within area-wide integrated pest management strategies, and its synergistic effect for Lepidoptera pests when combined with other biological control tactics such as parasitoids has been documented. The purposes of this research were to evaluate the response of an Argentinean codling moth strain to a sub-sterilizing radiation dose of 100 Gy and to assess the acceptability and suitability of sterile codling moth eggs by the egg parasitoids, Trichogramma cacoeciae (Marchal) and Trichogramma nerudai (Pintureau and Gerding). Irradiated female moths survived better than irradiated male moths and non-irradiated male and female moths. Also, the fecundity of irradiated female moths was reduced by more than 30% as compared to non-irradiated ones whereas their fertility was close to zero. The F1 generation was male biased with a lower fertility (inherited sterility) than the parental generation. Trichogramma cacoeciae and T. nerudai parasitized both fertile and sterile eggs. However, there was a significant reduction in acceptability for sterile eggs. Trichogramma nerudai parasitized more eggs than T. cacoeciae, but egg acceptability for this species was proportionally lower than for T. cacoeciae especially on eggs oviposited by irradiated females. Development to adult of both parasitoids species was not substantially affected by the origin of the eggs and the wasps had acceptable levels of adult emergence, survival and fecundity. These results provided useful information on the potential for controlling the codling moth using egg parasitoids and the sterile insect technique in Argentina. [source]


International cooperation on western corn rootworm ecology research: state-of-the-art and future research

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 1 2009
J. Moeser
Abstract 1,Invasive pest species are challenging partly because the invasion process may be highly dynamic and because of the lack of knowledge of many researchers, professionals and farmers in the newly-invaded regions. The chrysomelid Diabrotica virgifera virgifera LeConte is such an invasive pest. It has been the main pest of continuous maize in the U.S.A. for more than 60 years and is currently spreading throughout Europe. 2,In the area with a long history of this pest (Central and North America), scientific knowledge concerning the ecology of this pest has accumulated over the last decades. This resource is of great importance to both America and Europe and has to be gathered, shared and adapted to new situations. We therefore examined, both qualitatively and quantitatively, the scientific literature relating to D. virgifera virgifera ecology. 3,The quantitative analysis suggests that research on D. virgifera virgifera ecology is still in its infancy in Europe and suffers from geographical barriers (between Europe and North America and between linguistic areas within Europe) and that scientific communication should be strengthened both between North America and Europe and within Europe. 4,As a first solution to this problem, we introduce three companion review articles that constitute a landmark for D. virgifera virgifera research, enabling European and American scientists and decision-makers to orient themselves and discover new opportunities for research. We also stress that international research cooperation is the most important key to successfully manage invasive species. [source]


Twig-Nesting Ants: The Hidden Predators of the Coffee Berry Borer in Chiapas, Mexico

BIOTROPICA, Issue 3 2010
Ashley Larsen
ABSTRACT Coffee is a globally important crop that is subject to numerous pest problems, many of which are partially controlled by predatory ants. Yet several studies have proposed that these ecosystem services may be reduced where agricultural systems are more intensively managed. Here we investigate the predatory ability of twig-nesting ants on the main pest of coffee, the coffee berry borer (Hypothenemus hampei) under different management systems in southwest Chiapas, Mexico. We conducted both laboratory and field experiments to examine which twig-nesting ant species, if any, can prey on free-living borers or can remove borers embedded in coffee fruits and whether the effects of the twig-nesting ant community differ with habitat type. Results indicate that several species of twig-nesting ants are effective predators of both free-living borers and those embedded in coffee fruits. In the lab, Pseudomyrmex ejectus, Pseudomyrmex simplex, and Pseudomyrmex PSW-53 effectively removed free-living and embedded borers. In the field, abundance, but not diversity, of twig-nesting ant colonies was influenced by shade management techniques, with the highest colony abundance present in the sites where shade trees were recently pruned. However, borer removal rates in the field were significant only in the shadiest site, but not in more intensively managed sites. This study provides evidence that twig-nesting ants can act as predators of the coffee berry borer and that the presence of twig-nesting ants may not be strongly linked to shade management intensity, as has been suggested for other arthropod predators of the borer. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source]


Pheromone blends and trap designs can affect catches of Sesamia nonagrioides Lef. (Lep., Noctuidae) males in maize fields

JOURNAL OF APPLIED ENTOMOLOGY, Issue 1-2 2001
A. Ameline
Among lepidopteran insects, the female-produced sex pheromones are the most widely used chemical stimuli for pest management by (i) mating disruption, and (ii) monitoring adult insect populations in agricultural crops. Sesamia nonagrioides is one of the main pests on maize crops around the Mediterranean area and monitoring adult populations with synthetic sex pheromone is of great interest. The technique used involved field trapping with synthetic pheromone blend. The reliability of the technique is directly related to the trap shape and pheromone blends. Universal Moth Trap® (UM trap, Biosyste,mes, France) and Service Régional de la Protection des Végétaux (SRPV) traps baited with either synthetic pheromone blend or virgin females were evaluated in two commercial maize fields (var.cecilia) (Belleserre, Tarn. France) to determine the potential use of synthetic lures in monitoring S. nonagrioides populations in maize field. The study showed that SRPV traps baited with synthetic pheromone blend caught significantly more S. nonagrioides males than UM traps baited with the same blend, indicating the efficiency of the SRPV traps in monitoring field population of S. nonagrioides. The study also showed that the synthetic pheromone-baited SRPV trap caught three times less adult males than the same traps baited with virgin females indicating that the synthetic blend was less attractive than the natural blend released by virgin females. However, despite the lower number of catches in the SRPV traps baited with synthetic pheromones, there was a significant and positive relationship between the number of catches in SRPV traps baited with the synthetic pheromone and with the females. This result indicates that synthetic pheromones can be used as baits in SRPV traps to monitor S. nonagrioides adult population in commercial maize crops. Nevertheless, to use the synthetic pheromone to monitor S. nonagrioides population effectively in the field, further refinement and improvement of the synthetic blend should be carried out in order to obtain a blend that is equally as attractive as the natural blend released by virgin females. [source]