Home About us Contact | |||
Main Magnetic Field (main + magnetic_field)
Selected AbstractsHigh-throughput screening of chemical exchange saturation transfer MR contrast agentsCONTRAST MEDIA & MOLECULAR IMAGING, Issue 3 2010Guanshu Liu Abstract A new high-throughput MRI method for screening chemical exchange saturation transfer (CEST) agents is demonstrated, allowing simultaneous testing of multiple samples with minimal attention to sample configuration and shimming of the main magnetic field (B0). This approach, which is applicable to diamagnetic, paramagnetic and liposome CEST agents, employs a set of inexpensive glass or plastic capillary tubes containing CEST agents put together in a cheap plastic tube holder, without the need for liquid between the tubes to reduce magnetic susceptibility effects. In this setup, a reference image of direct water saturation spectra is acquired in order to map the absolute water frequency for each volume element (voxel) in the sample image, followed by an image of saturation transfer spectra to determine the CEST properties. Even though the field over the total sample is very inhomogeneous due to air,tube interfaces, the shape of the direct saturation spectra is not affected, allowing removal of susceptibility shift effects from the CEST data by using the absolute water frequencies from the reference map. As a result, quantitative information such as the mean CEST intensity for each sample can be extracted for multiple CEST agents at once. As an initial application, we demonstrate rapid screening of a library of 16 polypeptides for their CEST properties, but in principle the number of tubes is limited only by the available signal-noise-ratio, field of view and gradient strength for imaging. Copyright © 2010 John Wiley & Sons, Ltd. [source] Sea-surface observations of the magnetic signals of ocean swellsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2004F. E. M. Lilley SUMMARY Ocean swells have a magnetic signal, caused by the motional induction of sea water moving in the steady main magnetic field of Earth. To check the character of such signals at the sea surface, a magnetometer has been set free from a ship to float unrestricted on the surface of the ocean for periods of several days. The path of the floating magnetometer was tracked by satellite; this procedure enabled also the eventual recovery of the magnetometer by the ship. Superimposed upon a background of slow change of magnetic field, as the magnetometer drifted across different patterns of crustal magnetization, are high-frequency signals generated by the strong ocean swell present at the time. These wave-generated signals are typically up to 5 nT trough-to-peak, consistent with theory for their generation by ocean swells several metres trough-to-peak in height. The power spectra of the magnetic signals show a consistent peak at period 13 s, appropriate for the known characteristics of ocean swell in the area. The power spectra then exhibit a strong (,7 power) fall-off as period decreases below 13 s. This strong fall-off is consistent with oceanographic observations of the spectra of surface swell, combined with motional induction theory. [source] Earth's magnetic field: ocean current contributions to vertical profiles in deep oceansGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2001F. E. M. (Ted) Lilley SUMMARY The Earth's main magnetic field, arising in the core, should, in the ocean, have a well-defined uniform gradient with depth. Superimposed upon this uniform gradient may be magnetic signals due to a variety of sources. These include crustal magnetization, the transient fluctuations arising external to the Earth and causing secondary induced fields within it; and, the focus of the present paper, magnetic signals arising from the motional induction of seawater moving in the steady main magnetic field of Earth. There are circumstances where theory predicts such motionally-induced magnetic fields to be of order 102 nT, and to vary with depth in a way which is directly related to the velocity profile. Exploratory soundings of the magnetic field with depth have been made in the oceans around Australia, both to test these predictions, and to investigate the practicability of measuring such profiles. The magnetic field parameter observed has been that of the ,total field', which should sense the component of the ocean velocity which lies in the magnetic meridian. The magnetometer has been lowered by cable from a ship and also operated free-fall to the seafloor (and return). The observations appear both to confirm the theoretical gradient of the main field where there is no ocean current and, where ocean currents exist, to give evidence of their profiles resolved in the direction of magnetic north. In particular, observations taken in an eddy of the East Australian Current show the correct contrast in sign for north and south flowing streams. [source] Robust automated shimming technique using arbitrary mapping acquisition parameters (RASTAMAP)MAGNETIC RESONANCE IN MEDICINE, Issue 5 2004L. Martyn Klassen Abstract Quantitative MRI techniques as well as methods such as blood oxygen level-dependent (BOLD) imaging and in vivo spectroscopy require stringent optimization of magnetic field homogeneity, particularly when using high main magnetic fields. Automated shimming approaches require a method of measuring the main magnetic field, B0, followed by adjusting the currents in resistive shim coils to maximize homogeneity. A robust automated shimming technique using arbitrary mapping acquisition parameters (RASTAMAP) using a 3D multiecho gradient echo sequence that measures B0 with high precision was developed. Inherent compensation and postprocessing methods enable removal of artifacts due to hardware timing errors, gradient propagation delays, gradient amplifier asymmetry, and eddy currents. This allows field maps to be generated for any field of view, bandwidth, resolution, or acquisition orientation without custom tuning of sequence parameters. Field maps of an aqueous phantom show ± 1 Hz variation with altered acquisition orientations and bandwidths. Subsequent fitting of measured shim coil field maps allows calculation of shim currents to produce optimum field homogeneity. Magn Reson Med 51:881,887, 2004. © 2004 Wiley-Liss, Inc. [source] Artifact due to B0 fluctuations in fMRI: Correction using the k- space central lineMAGNETIC RESONANCE IN MEDICINE, Issue 1 2001Emmanuel Durand Abstract Magnetic resonance experiments require the main magnetic field, B0, to remain very stable. Several external sources, such as moving ferromagnetic objects and/or changing electromagnetic fields, can significantly change the value of B0 over time. This work describes an apparent displacement along the phase-encoding axis caused by a variation in B0. This artifact was observed in fMRI images acquired with EPI. The effect was characterized and tested using an immobile phantom. The image displacement motion along the phase-encoding axis closely followed the changes in B0. The phase of the central line in the Fourier space was successfully used to correct this artifact. Fluctuations in B0 may result in artifacts that mimic subject head motion, and must be appropriately corrected. Magn Reson Med 46:198,201, 2001. © 2001 Wiley-Liss, Inc. [source] Pacemaker Reed Switch Behavior in 0.5, 1.5, and 3.0 Tesla Magnetic Resonance Imaging Units: Are Reed Switches Always Closed in Strong Magnetic Fields?PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 10 2002ROGER LUECHINGER LUECHINGER, R., et al.: Pacemaker Reed Switch Behavior in 0.5, 1.5, and 3.0 Tesla Magnetic Resonance Imaging Units: Are Reed Switches Always Closed in Strong Magnetic Fields? MRI is established as an important diagnostic tool in medicine. However, the presence of a cardiac pacemaker is usually regarded as a contraindication for MRI due to safety reasons. The aim of this study was to investigate the state of a pacemaker reed switch in different orientations and positions in the main magnetic field of 0.5-, 1.5-, and 3.0-T MRI scanners. Reed switches used in current pacemakers and ICDs were tested in 0.5-, 1.5-, and 3.0-T MRI scanners. The closure of isolated reed switches was evaluated for different orientations and positions relative to the main magnetic field. The field strengths to close and open the reed switch and the orientation dependency of the closed state inside the main magnetic field were investigated. The measurements were repeated using two intact pacemakers to evaluate the potential influence of the other magnetic components, like the battery. If the reed switches were oriented parallel to the magnetic fields, they closed at 1.0 ± 0.2 mT and opened at 0.7 ± 0.2 mT. Two different reed switch behaviors were observed at different magnetic field strengths. In low magnetic fields (< 50 mT), the reed switches were closed. However, in high magnetic fields (> 200 mT), the reed switches opened in 50% of all tested orientations. No difference between the three scanners could be demonstrated. The reed switches showed the same behavior whether they were isolated or an integral part of the pacemakers. The reed switch in a pacemaker or an ICD does not necessarily remain closed in strong magnetic fields at 0.5, 1.5, or 3.0 T and the state of the reed switch may not be predictable with certainty in clinical situations. [source] Robust automated shimming technique using arbitrary mapping acquisition parameters (RASTAMAP)MAGNETIC RESONANCE IN MEDICINE, Issue 5 2004L. Martyn Klassen Abstract Quantitative MRI techniques as well as methods such as blood oxygen level-dependent (BOLD) imaging and in vivo spectroscopy require stringent optimization of magnetic field homogeneity, particularly when using high main magnetic fields. Automated shimming approaches require a method of measuring the main magnetic field, B0, followed by adjusting the currents in resistive shim coils to maximize homogeneity. A robust automated shimming technique using arbitrary mapping acquisition parameters (RASTAMAP) using a 3D multiecho gradient echo sequence that measures B0 with high precision was developed. Inherent compensation and postprocessing methods enable removal of artifacts due to hardware timing errors, gradient propagation delays, gradient amplifier asymmetry, and eddy currents. This allows field maps to be generated for any field of view, bandwidth, resolution, or acquisition orientation without custom tuning of sequence parameters. Field maps of an aqueous phantom show ± 1 Hz variation with altered acquisition orientations and bandwidths. Subsequent fitting of measured shim coil field maps allows calculation of shim currents to produce optimum field homogeneity. Magn Reson Med 51:881,887, 2004. © 2004 Wiley-Liss, Inc. [source] |