Macroscopic Stress (macroscopic + stress)

Distribution by Scientific Domains


Selected Abstracts


Micromechanical modelling of monotonic drained and undrained shear behaviour of granular media using three-dimensional DEM

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2002
Thallak.
Abstract In this paper, numerical simulation results of isotropic compression and triaxial static shear tests under drained and undrained stress paths on polydisperse assembly of loose and dense spheres are presented. An examination of the micromechanical behaviour of loose and dense assemblies under drained and undrained conditions, considering the particulate nature of granular materials, has been carried out to explain micromechanically the granular material behaviour at the grain scale level. The numerical simulations have been carried out using a discrete element model (DEM) which considers a 1000 sphere particle polydisperse assembly with periodic space representing an infinite three-dimensional space. In this paper, we present how DEM simulations can contribute to developments in constitutive modelling of granular materials through micromechanical approach using information on microstructure evolution. A series of numerical tests are performed using DEM on 3-D assemblages of spheres to study the evolution of the internal variables such as average co-ordination number and induced anisotropy during deformation along with the macroscopic behaviour of the assemblage in drained and undrained shear tests. In a qualitative sense, the macroscopic stress,strain results and stress path evolution in these simulations using 3-D assemblies demonstrate that DEM simulations are capable of reproducing realistic compression and shear behaviour of granular materials. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Rapid determination of stress factors and absolute residual stresses in thin films

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 6 2006
E. Eiper
A methodology is presented that allows the determination of experimental stress factors in thin films on the basis of static diffraction measurements. The approach relies on the characterization of thin films deposited on a monocrystalline substrate serving as a mechanical sensor. Rocking-curve measurements of the symmetrical reflections of the substrate are used to determine the substrate curvature and subsequently the macroscopic stress imposed on the film. The elastic strain in the film is determined by lattice-spacing measurement at different sample tilt angles. The calculated experimental stress factors are applied to thin films deposited on other types of substrates and are used to determine the absolute magnitude of the residual stress. The approach is applied to nanocrystalline TiN and CrN thin films deposited on Si(100) and steel substrates, characterized using a laboratory-type ,/, goniometer. [source]


Stress Development Due to Capillary Condensation in Powder Compacts: A Two-Dimensional Model Study

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2000
Stefan Lampenscherf
A model experiment is presented to investigate the relationship between the humidity-dependent liquid distribution and the macroscopic stress in a partially wet powder compact. Therefore, films of monosized spherical particles were cast on silicon substrates. Using environmental SEM the geometry of the liquid necks trapped between particles was imaged as a function of relative humidity. Simultaneously the macroscopic stress in the substrate adhered particle film was measured by capacitive deflection measurement. The experimentally found humidity dependence of the liquid neck size and the macroscopic film stress are compared with model predictions. The circle,circle approximation is used to predict the size of the liquid necks between touching particles as a function of the capillary pressure. Using the modified Kelvin relation between capillary pressure and relative humidity, we consider the effect of an additional solute which may be present in the capillary liquid. The results of the stress measurement are compared with the model predictions for a film of touching particles in hexagonal symmetry. The contribution of the capillary interaction to the adhesion force between neighboring particles is calculated using the integrated Laplace equation. The resulting film stress can be approximated relating this capillary force to an effective cross section per particle. The experimentally found humidity dependence of the liquid neck size is in good agreement with the model predictions for finite solute concentration. The film stress corresponds to the model predictions only for large relative humidities and shows an unexpected increase at small values. As is shown with an atomic force microscope, the real structure of the particle,particle contact area changes during the wet/dry cycle. A solution/reprecipitation process causes surface heterogeneities and solid bridging between the particles. It is claimed that the existence of a finite contact zone between the particles gives rise to the unexpected increase of the stress at small relative humidities. [source]


On the capillary stress tensor in wet granular materials

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2009
L. Scholtès
Abstract This paper presents a micromechanical study of unsaturated granular media in the pendular regime, based on numerical experiments using the discrete element method, compared with a microstructural elastoplastic model. Water effects are taken into account by adding capillary menisci at contacts and their consequences in terms of force and water volume are studied. Simulations of triaxial compression tests are used to investigate both macro and micro-effects of a partial saturation. The results provided by the two methods appear to be in good agreement, reproducing the major trends of a partially saturated granular assembly, such as the increase in the shear strength and the hardening with suction. Moreover, a capillary stress tensor is exhibited from capillary forces by using homogenization techniques. Both macroscopic and microscopic considerations emphasize an induced anisotropy of the capillary stress tensor in relation with the pore fluid distribution inside the material. Insofar as the tensorial nature of this fluid fabric implies shear effects on the solid phase associated with suction, a comparison has been made with the standard equivalent pore pressure assumption. It is shown that water effects induce microstructural phenomena that cannot be considered at the macro level, particularly when dealing with material history. Thus, the study points out that unsaturated soil stress definitions should include, besides the macroscopic stresses such as the total stress, the microscopic interparticle stresses such as the ones resulting from capillary forces, in order to interpret more precisely the implications of the pore fluid on the mechanical behaviour of granular materials. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Second order homogenization method based on higher order finite elements

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2005
A. D?ster
Modeling materials with lattice-like microstructures like open-cell foams requires an extended continuum mechanical setting on the macroscopic scale, e. g. a micropolar or micromorphic theory. In order to avoid the formulation of constitutive equations a higher order numerical homogenization scheme (FE2) is proposed. Therefore, each integration point possesses its own microstructure which, in the present case, consists of beam-like elements representing the cell walls. In this paper, the microstructures are discretized by continuum-based higher order locking free finite elements with high aspect ratios, leading to a numerically efficient treatment of a local displacement-driven boundary value problem according to the macroscopic strain and curvature. The resulting stress distributions in the microstructures are homogenized to macroscopic stresses and couple stresses. The approach is demonstrated by a numerical example. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]